Citation: | Liu Jianqiang,Liu Siqi,Lin Wenming, et al. Sea ice identification based on CFOSAT scatterometer[J]. Haiyang Xuebao,2023, 45(6):134–140 doi: 10.12284/hyxb2023069 |
[1] |
Liu Zheng, Schweiger A. Low-level and surface wind jets near sea ice edge in the Beaufort Sea in late autumn[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(13): 6873−6891. doi: 10.1029/2018JD029770
|
[2] |
Wu Lichuan. Effect of atmosphere-wave-ocean/ice interactions on a polar low simulation over the Barents Sea[J]. Atmospheric Research, 2021, 248: 105183. doi: 10.1016/j.atmosres.2020.105183
|
[3] |
Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7: 627−637. doi: 10.1038/ngeo2234
|
[4] |
Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.1073/pnas.1906556116
|
[5] |
李彦青. 渤海海冰可见光遥感数据的反演、同化和候平均时间序列的构建分析[D]. 青岛: 中国海洋大学, 2013.
Li Yanqing. The retrieval, assimilation, pentadly averaged time series building and analysis of sea ice in the Bohai Sea using the visible remote sensing data[D]. Qingdao: Ocean University of China, 2013.
|
[6] |
石立坚, 王其茂, 邹斌, 等. 利用海洋(HY-2)卫星微波辐射计数据反演北极区域海冰密集度[J]. 极地研究, 2014, 26(4): 410−417. doi: 10.13679/j.jdyj.2014.4.410
Shi Lijian, Wang Qimao, Zou Bin, et al. Arctic sea ice concentration retrieval using HY-2 radiometer data[J]. Chinese Journal of Polar Research, 2014, 26(4): 410−417. doi: 10.13679/j.jdyj.2014.4.410
|
[7] |
Johansson A M, Brekke C, Spreen G, et al. X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring[J]. Remote Sensing of Environment, 2018, 204: 162−180. doi: 10.1016/j.rse.2017.10.032
|
[8] |
Cartwright J, Fraser A D, Porter-Smith R. Polar maps of C-band backscatter parameters from the Advanced Scatterometer[J]. Earth System Science Data, 2022, 14(2): 479−490. doi: 10.5194/essd-14-479-2022
|
[9] |
Long D G, Hardin P J, Whiting P T. Resolution enhancement of spaceborne scatterometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(3): 700−715. doi: 10.1109/36.225536
|
[10] |
Remund Q P, Long D G. Sea ice extent mapping using Ku band scatterometer data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11515−11527. doi: 10.1029/98JC02373
|
[11] |
Remund Q P, Long D G. Sea ice mapping algorithm for QuikScat and seawinds[C]//IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No. 98CH36174). Seattle: IEEE, 1998: 1686−1688.
|
[12] |
Rivas M B, Stoffelen A. New Bayesian algorithm for sea ice detection with QuikSCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1894−1901. doi: 10.1109/TGRS.2010.2101608
|
[13] |
Rivas M B, Verspeek J, Verhoef A, et al. Bayesian sea ice detection with the advanced scatterometer ASCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2649−2657. doi: 10.1109/TGRS.2011.2182356
|
[14] |
赵朝方, 徐锐, 赵可. 基于HY-2A/SCAT数据极地海冰检测方法研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 140−149. doi: 10.16441/j.cnki.hdxb.20190275
Zhao Chaofang, Xu Rui, Zhao Ke. Research of Polar sea ice detection methods based on HY-2A/SCAT[J]. Periodical of Ocean University of China, 2019, 49(10): 140−149. doi: 10.16441/j.cnki.hdxb.20190275
|
[15] |
Zhai Xiaochun, Wang Zhixiong, Zheng Zhaojun, et al. Sea ice monitoring with CFOSAT scatterometer measurements using random forest classifier[J]. Remote Sensing, 2021, 13(22): 4686. doi: 10.3390/rs13224686
|
[16] |
Zou Juhong, Zeng Tao, Guo Maohua, et al. The study on an Antarctic sea ice identification algorithm of the HY-2A microwave scatterometer data[J]. Acta Oceanologica Sinica, 2016, 35(9): 74−79. doi: 10.1007/s13131-016-0927-5
|
[17] |
Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852
|