Citation: | Wang Yuhai,Deng Anjun,Guo Chuansheng. Storm modeling of 1991−2020 tropical cyclones in the Bay of Bengal and the timing of the head-bay maximum surge[J]. Haiyang Xuebao,2023, 45(6):1–12 doi: 10.12284/hyxb2023067 |
[1] |
Proudman J. Oscillations of tide and surge in an estuary of finite length[J]. Journal of Fluid Mechanics, 1957, 2(4): 371−382. doi: 10.1017/S002211205700018X
|
[2] |
Rossiter J R. Interaction between tide and surge in the Thames[J]. Geophysical Journal of the Royal Astronomical Society, 1961, 6(1): 29−53. doi: 10.1111/j.1365-246X.1961.tb02960.x
|
[3] |
Prandle D, Wolf J. The interaction of surge and tide in the North Sea and River Thames[J]. Geophysical Journal International, 1978, 55(1): 203−216. doi: 10.1111/j.1365-246X.1978.tb04758.x
|
[4] |
高焕臣. 风暴潮与天文潮非线性相互作用结果及有关问题的分析[J]. 海洋通报, 1994, 13(2): 19−23.
Gao Huanchen. Non-linear interaction between storm surge and astronomical tide[J]. Marine Science Bulletin, 1994, 13(2): 19−23.
|
[5] |
Horsburgh K J, Wilson C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J]. Journal of Geophysical Research, 2007, 112(C8): C08003.
|
[6] |
Bernier N B, Thompson K R. Tide-surge interaction off the east coast of Canada and northeastern United States[J]. Journal of Geophysical Research: Oceans, 2007, 112(C6): C06008.
|
[7] |
Zhang Heng, Cheng Weicong, Qiu Xixi, et al. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea[J]. Continental Shelf Research, 2017, 142: 32−49. doi: 10.1016/j.csr.2017.05.015
|
[8] |
Feng Jianlong, Jiang Wensheng, Li Delei, et al. Characteristics of tide-surge interaction and its roles in the distribution of surge residuals along the coast of China[J]. Journal of Oceanography, 2019, 75(3): 225−234. doi: 10.1007/s10872-018-0495-8
|
[9] |
杨万康. 典型海湾风暴潮的非线性与共振效应及其危险性评估研究[D]. 青岛: 中国科学院大学, 2019.
Yang Wankang. Study on nonlinear and resonance effects and risk assessment of storm surge in typical bay[D]. Qingdao: University of Chinese Academy of Sciences, 2019.
|
[10] |
白一冰, 石景元, 路川藤, 等. “烟花”台风影响下长江南通以下河段的增水分布特征[J]. 水利水运工程学报, 2021(6): 25−33.
Bai Yibing, Shi Jingyuan, Lu Chuanteng, et al. Spatio-temporal distribution characteristics of surge in the reach below Nantong of Yangtze Estuary under the influence of Typhoon In-Fa[J]. Hydro-Science and Engineering, 2021(6): 25−33.
|
[11] |
张西琳, 楚栋栋, 张继才, 等. 东南沿海台风风暴潮增水过程中非线性机制和地形的作用研究: 以1509号台风“灿鸿”为例[J]. 海洋与湖沼, 2020, 51(6): 1320−1331.
Zhang Xilin, Chu Dongdong, Zhang Jicai, et al. Effects of nonlinear terms and topography on storm surges in the southeast seas of China: a case study of Typhoon Chan-Hom[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1320−1331.
|
[12] |
Chiu S, Small C. Observations of cyclone-induced storm surge in coastal Bangladesh[J]. Journal of Coastal Research, 2016, 32(5): 1149−1161.
|
[13] |
Krien Y, Testut L, Islam A K M S, et al. Towards improved storm surge models in the northern Bay of Bengal[J]. Continental Shelf Research, 2017, 135: 58−73. doi: 10.1016/j.csr.2017.01.014
|
[14] |
Antony C, Unnikrishnan A S, Krien Y, et al. Tide-surge interaction at the head of the Bay of Bengal during Cyclone Aila[J]. Regional Studies in Marine Science, 2020, 35: 101133. doi: 10.1016/j.rsma.2020.101133
|
[15] |
As-Salek J A, Yasuda T. Tide-surge interaction in the Meghna Estuary: most severe conditions[J]. Journal of Physical Oceanography, 2001, 31(10): 3059−3072. doi: 10.1175/1520-0485(2001)031<3059:TSIITM>2.0.CO;2
|
[16] |
Hussain M A, Tajima Y. Numerical investigation of surge-tide interactions in the Bay of Bengal along the Bangladesh coast[J]. Natural Hazards, 2017, 86(2): 669−694. doi: 10.1007/s11069-016-2711-4
|
[17] |
Paul G C, Khatun R, Ali E, et al. Importance of an efficient tide-surge interaction model for the coast of Bangladesh: a case study with the tropical cyclone Roanu[J]. Journal of Coastal Conservation, 2021, 25(1): 12. doi: 10.1007/s11852-020-00787-z
|
[18] |
Sinha P C, Jain I, Bhardwaj N, et al. Numerical modeling of tide-surge interaction along Orissa coast of India[J]. Natural Hazards, 2008, 45(3): 413−427. doi: 10.1007/s11069-007-9176-4
|
[19] |
Islam S N. Deltaic floodplains development and wetland ecosystems management in the Ganges-Brahmaputra-Meghna rivers delta in Bangladesh[J]. Sustainable Water Resources Management, 2016, 2(3): 237−256. doi: 10.1007/s40899-016-0047-6
|
[20] |
Rose L, Bhaskaran P K. Tidal propagation and its non-linear characteristics in the Head Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2017, 188: 181−198. doi: 10.1016/j.ecss.2017.02.024
|
[21] |
Rogers K G, Goodbred S L Jr. The sundarbans and Bengal delta: the world’s largest tidal mangrove and delta system[M]//Kale V S. Landscapes and Landforms of India. Dordrecht: Springer, 2014: 181−187.
|
[22] |
FVCOM Team. An unstructured grid, finite-volume community ocean model-FVCOM user manual[R]. SMAST/UMASSD-13-0701, 2013.
|
[23] |
SWAN Team. User manual: SWAN Cycle III version 41.01[R]. The Netherlands: Delft University of Technology, 2014.
|
[24] |
王喜年. 风暴潮预报知识讲座 第五讲 风暴潮预报技术(2)[J]. 海洋预报, 2002, 19(2): 64−70.
Wang Xinian. Storm prediction knowledge lecture No. 5: storm prediction technique (2)[J]. Marine Forecasts, 2002, 19(2): 64−70.
|
[25] |
Knapp K R, Diamond H J, Kossin J P, et al. International best track archive for climate stewardship (IBTrACS) project, Version 4[R]. NOAA National Centers for Environmental Information, 2018.
|
[26] |
Willoughby H E, Darling R W R, Rahn M E. Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles[J]. Monthly Weather Review, 2006, 134(4): 1102−1120. doi: 10.1175/MWR3106.1
|
[27] |
Danish Hydraulic Institute (DHI). MIKE 21-Tidal analysis and prediction module, scientific documentation[EB/OL]. https://manuals.mikepoweredbydhi.help/2019/Coast_and_Sea/TideTools_Scientific_Doc.pdf
|
[28] |
Krien Y, Mayet C, Testut L, et al. Improved bathymetric dataset and tidal model for the northern Bay of Bengal[J]. Marine Geodesy, 2016, 39(6): 422−438. doi: 10.1080/01490419.2016.1227405
|
[29] |
Elahi M W E, Jalón-Rojas I, Wang X H, et al. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh[J]. Journal of Geophysical Research: Oceans, 2020, 125(11): e2020JC016417. doi: 10.1029/2020JC016417
|
[30] |
Antony C, Unnikrishnan A S. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 6−11. doi: 10.1016/j.ecss.2013.08.004
|
[31] |
Ke Ziming, Yankovsky A E. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone[J]. Continental Shelf Research, 2011, 31(9): 929−938. doi: 10.1016/j.csr.2011.02.015
|
[32] |
As-Salek J A. Coastal trapping and funneling effects on storm surges in the Meghna estuary in relation to cyclones hitting Noakhali–cox’s bazar coast of Bangladesh[J]. Journal of Physical Oceanography, 1998, 28(2): 227−249. doi: 10.1175/1520-0485(1998)028<0227:CTAFEO>2.0.CO;2
|
[33] |
Indian Meteorological Department. Report on cyclonic disturbances over north Indian ocean during 2013[R/OL]. [2022–10–10]. https://rsmcnewdelhi.imd.gov.in/uploads/report/27/27_14ab8f_rsmc-2013.pdf
|
[34] |
Feng X, Olabarrieta M, Valle-Levinson A. Storm-induced semidiurnal perturbations to surges on the US Eastern Seaboard[J]. Continental Shelf Research, 2016, 114: 54−71. doi: 10.1016/j.csr.2015.12.006
|
[35] |
McInnes K L, Hubbert G D. A numerical modelling study of storm surges in Bass Strait[J]. Australian Meteorological Magazine, 2003, 52(3): 143−156.
|