Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
Lü Sirui,Lin Wenming,Zou Juhong, et al. Error quantification and cross calibration of sea surface wind speeds from multiple remote sensing satellites[J]. Haiyang Xuebao,2023, 45(5):118–128 doi: 10.12284/hyxb2023066
Citation: Lü Sirui,Lin Wenming,Zou Juhong, et al. Error quantification and cross calibration of sea surface wind speeds from multiple remote sensing satellites[J]. Haiyang Xuebao,2023, 45(5):118–128 doi: 10.12284/hyxb2023066

Error quantification and cross calibration of sea surface wind speeds from multiple remote sensing satellites

doi: 10.12284/hyxb2023066
  • Received Date: 2022-07-29
  • Rev Recd Date: 2022-12-07
  • Available Online: 2022-12-20
  • Publish Date: 2023-05-01
  • In the field of ocean remote sensing research, the construction of a high temporal resolution sea surface wind (SSW) dataset through the use of multi-source satellite data has become a popular topic. This article aims to quantitatively evaluate the error characteristics and calibration coefficients of SSW speed data obtained from different sensors using buoy data and ERA5 for the satellites scatterometer and radiometer in orbit simultaneously in 2019. The unit error of various satellite remote sensing SSW is comparatively analyzed, providing technical support for quantitative applications such as multi-source satellite SSW blending and assimilation. Furthermore, compared with equal neutral wind speeds, the wind speeds inferred by microwave scatterometer and radiometer are better suited to be interpreted by stress-equivalent winds, which enables the optimal application of satellite remote sensing data. The SSW speeds remotely sensed by existing scatterometers and radiometers are generally consistent with the buoy and ERA5 stress-equivalent wind, but exhibit some deviations at high wind speeds (wind speed greater than 20 m/s). An indicator factor for lateral comparison of wind speed errors is proposed to achieve relative error estimation of scatterometer and radiometer wind speeds, which provides an important reference for error setting in multi-source data assimilation applications. The results demonstrate that the inherent wind speed errors of the five scatterometers range from 0.40 to 0.73, and the inherent wind speed errors of the five microwave radiometers range from 0.86 to 1.23. In conclusion, it can be observed that the scatterometers generally exhibit better accuracy in SSW speed estimation than radiometers in the wind speed range of 0 m/s to 20 m/s.
  • loading
  • [1]
    Wang He, Zhu Jianhua, Lin Mingsen, et al. Evaluating Chinese HY-2B HSCAT ocean wind products using buoys and other scatterometers[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 923−927. doi: 10.1109/LGRS.2019.2940384
    [2]
    Portabella M, Stoffelen A. On scatterometer ocean stress[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(2): 368−382. doi: 10.1175/2008JTECHO578.1
    [3]
    Polverari F, Portabella M, Lin Wenming, et al. On high and extreme wind calibration using ASCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4202210.
    [4]
    Wright E E, Bourassa M A, Stoffelen A, et al. Characterizing buoy wind speed error in high winds and varying sea state with ASCAT and ERA5[J]. Remote Sensing, 2021, 13(22): 4558. doi: 10.3390/rs13224558
    [5]
    Zhao Ke, Zhao Chaofang. Evaluation of HY-2A scatterometer ocean surface wind data during 2012−2018[J]. Remote Sensing, 2019, 11(24): 2968. doi: 10.3390/rs11242968
    [6]
    Li Xiuzhong, Lin Wenming, Liu Baochang, et al. Sea surface wind retrieval using the combined scatterometer and altimeter backscatter measurements of the HY-2B satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5101312.
    [7]
    Zhao Ke, Zhao Chaofang, Chen Ge. Evaluation of Chinese scatterometer ocean surface wind data: preliminary analysis[J]. Earth and Space Science, 2021, 8(7): e2020EA001482.
    [8]
    Wang Zhixiong, Zou Juhong, Stoffelen A, et al. Scatterometer sea surface wind product validation for HY-2C[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6156−6164. doi: 10.1109/JSTARS.2021.3087742
    [9]
    Kloe J D, Stoffelen A, Verhoef A. Improved use of scatterometer measurements by using stress-equivalent reference winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2340−2347. doi: 10.1109/JSTARS.2017.2685242
    [10]
    Chen Ge. An intercomparison of TOPEX, NSCAT, and ECMWF wind speeds: illustrating and understanding systematic discrepancies[J]. Monthly Weather Review, 2004, 132(3): 780−792. doi: 10.1175/1520-0493(2004)132<0780:AIOTNA>2.0.CO;2
    [11]
    Vogelzang J, Stoffelen A, Verhoef A, et al. On the quality of high-resolution scatterometer winds[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10): C10033. doi: 10.1029/2010JC006640
    [12]
    Mccoll K A, Vogelzang J, Konings A G, et al. Extended triple collocation: estimating errors and correlation coefficients with respect to an unknown target[J]. Geophysical Research Letters, 2014, 41(17): 6229−6236. doi: 10.1002/2014GL061322
    [13]
    Zwieback S, Scipal K, Dorigo W, et al. Structural and statistical properties of the collocation technique for error characterization[J]. Nonlinear Processes in Geophysics, 2012, 19(1): 69−80. doi: 10.5194/npg-19-69-2012
    [14]
    Ribal A, Young I R. Global calibration and error estimation of altimeter, scatterometer, and radiometer wind speed using triple collocation[J]. Remote Sensing, 2020, 12(12): 1997. doi: 10.3390/rs12121997
    [15]
    Vogelzang J, Stoffelen A, Lindsley R D, et al. The ASCAT 6.25-km wind product[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2321−2331. doi: 10.1109/JSTARS.2016.2623862
    [16]
    Wentz F J, Ricciardulli L, Rodriguez E, et al. Evaluating and extending the ocean wind climate data record[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2165−2185. doi: 10.1109/JSTARS.2016.2643641
    [17]
    Xiang Kunsheng, Yin Xiaobin, Xing Shuguo, et al. Preliminary estimate of CFOSAT satellite products in tropical cyclones[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4203516.
    [18]
    OSI SAF/EARS Winds Team. ASCAT wind product user manual: version 1.17[S]. Darmstadt: EUMETSAT, 2021.
    [19]
    OSI SAF Winds Team. ScatSat-1 wind product user manual: version 1.3[S]. Darmstadt: EUMETSAT, 2018.
    [20]
    OSI SAF Winds Team. Product User Manual (PUM) for the HY-2 winds: version 1.0[S]. Darmstadt: EUMETSAT, 2021.
    [21]
    Zhao Xiaokang, Lin Wenming, Portabella M, et al. Effects of rain on CFOSAT scatterometer measurements[J]. Remote Sensing of Environment, 2022, 274: 113015.
    [22]
    Liu W T, Katsaros K B, Businger J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 1979, 36(9): 1722−1735. doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
    [23]
    Liu Guoqiang, He Yijun, Zhang Yuanzhi, et al. Estimation of global wind energy input to the surface waves based on the scatterometer[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1017−1020. doi: 10.1109/LGRS.2012.2189194
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (424) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return