Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Chen Kean,Zhang Huichao,Tao Chunhui, et al. Textural and trace elemental characteristics of sulfide from the Longqi hydrothermal field, Southwest Indian Ridge−Implication for the occurrence and precipitation mechanism of gold[J]. Haiyang Xuebao,2023, 45(6):93–108 doi: 10.12284/hyxb2023061
Citation: Chen Kean,Zhang Huichao,Tao Chunhui, et al. Textural and trace elemental characteristics of sulfide from the Longqi hydrothermal field, Southwest Indian Ridge−Implication for the occurrence and precipitation mechanism of gold[J]. Haiyang Xuebao,2023, 45(6):93–108 doi: 10.12284/hyxb2023061

Textural and trace elemental characteristics of sulfide from the Longqi hydrothermal field, Southwest Indian RidgeImplication for the occurrence and precipitation mechanism of gold

doi: 10.12284/hyxb2023061
  • Received Date: 2022-07-29
  • Rev Recd Date: 2022-11-30
  • Available Online: 2023-06-15
  • Publish Date: 2023-06-30
  • Compared with the fast and intermediate spreading mid-ocean ridges, the hydrothermal fields forming at slow and ultra-slow mid-ocean ridges usually contain abundant metal sulfide resources. Previously statistical results suggested the gold concentrations in massive sulfide deposits decreases with the increase of spreading rate, and the hydrothermal fields, located in ultra-slow mid-ocean ridges, have the highest gold concentrations. Previous studies carried out detailed research on the tectonic environment and sulfide assemblage of the Longqi hydrothermal field, but the occurrence and precipitation mechanism of gold in the Longqi hydrothermal field still need further research. In this paper, the texture and trace element concentration of sulfides in the Longqi hydrothermal field are analyzed in order to investigate the occurrence and precipitation mechanism of gold. The sulfides in the Longqi hydrothermal field are mainly pyrite, along with chalcopyrite (isocubanite) and sphalerite. Minerals such as ferronatrite and native gold have also been observed. According to the mineral texture and morphology, pyrite is divided into two types the first type (Py1) is fine-grained or colloidal, while the other type (Py2) shows subhedral-euhedral with coarse grain. Py1 usually exists in Py2 or is surrounded by Py2 as inclusions, and Py2 coexists with euhedral-subhedral chalcopyrite and sphalerite. Native gold mainly exists in the internal pores of Py1, and minor grains exist between Py2 and other sulfides. Compared with Py2, Py1 contains higher trace element contents of Ni, Zn, Pb, Ba, Mn, V, Mg, U, Au, Ag, Cd, and lower contents of Co, Se, As, Sb. Under the physico-chemical conditions of the Longqi hydrothermal field, Au(HS) is the main existing form of Au. The decrease of HS concentration and the increase of pH value will promote the precipitation of gold. The mixing of hydrothermal fluids with seawater in the Longqi hydrothermal field results in an increase in pH values and a decrease in temperature, which can lead to pyrite crystallization and consequently decrease of sulfur fugacity of hydrothermal fluid. An increase in pH and decrease of sulfur fugacity both contributed to the precipitation of gold.
  • loading
  • [1]
    Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111−141.
    [2]
    Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°−16°E[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1−14.
    [3]
    Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR[J]. Marine Geology, 2006, 225(1/4): 157−175.
    [4]
    Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50−65. doi: 10.5670/oceanog.2007.80
    [5]
    Boltovskoy D. Encyclopedia of marine geosciences[J]. Ameghiniana, 2017, 54(2): 255−256. doi: 10.5710/AMGH.v54i2.1
    [6]
    Ye Jun, Shi Xuefa, Yang Yaomin, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E[J]. Acta Oceanologica Sinica, 2012, 31(6): 72−82. doi: 10.1007/s13131-012-0254-4
    [7]
    Fuchs S, Hannington M D, Petersen S. Divining gold in seafloor polymetallic massive sulfide systems[J]. Mineralium Deposita, 2019, 54(6): 789−820. doi: 10.1007/s00126-019-00895-3
    [8]
    Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea[J]. The Canadian Mineralogist, 2001, 39(4): 957−978. doi: 10.2113/gscanmin.39.4.957
    [9]
    Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges[J]. Mineralium Deposita, 2018, 53(1): 143−152. doi: 10.1007/s00126-017-0762-4
    [10]
    黄威, 陶春辉, 廖时理, 等. 金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集[J]. 海洋地质与第四纪地质, 2020, 40(1): 126−135.

    Huang Wei, Tao Chunhui, Liao Shili, et al. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126−135.
    [11]
    Hannington M D, Peter J M, Scott S D. Gold in sea-floor polymetallic sulfide deposits[J]. Economic Geology, 1986, 81(8): 1867−1883. doi: 10.2113/gsecongeo.81.8.1867
    [12]
    Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182−2209. doi: 10.2113/gsecongeo.88.8.2182
    [13]
    张海桃, 杨耀民, 梁娟娟, 等. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107−118.

    Zhang Haitao, Yang Yaomin, Liang Juanjuan, et al. A global estimate of resource potential for modern seafloor massive sulfide deposits[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107−118.
    [14]
    Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[R]. Ottawa: Geological Survey of Canada, 2004: 4598.
    [15]
    Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Geoscience, 2003, 335(10/11): 825−852.
    [16]
    Pokrovski G S, Akinfiev N N, Borisova A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling[J]. Geological Society, London, Special Publications, 2014, 402(1): 9−70. doi: 10.1144/SP402.4
    [17]
    Petersen S, Krätschell A, Augustin N, et al. News from the seabed——Geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175−187. doi: 10.1016/j.marpol.2016.03.012
    [18]
    叶俊, 石学法, 杨耀民, 等. 西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义[J]. 矿物学报, 2011, 31(1): 17−29.

    Ye Jun, Shi Xuefa, Yang Yaomin, et al. Mineralogy of sulfides from ultraslow spreading southwest Indian ridge 49.6°E hydrothermal field and its metallogenic significance[J]. Acta Mineralogica Sinica, 2011, 31(1): 17−29.
    [19]
    曹红, 孙治雷, 刘昌岭, 等. 西南印度洋脊龙旂热液场金属硫化物的矿物学组成及指示意义[J]. 海洋地质与第四纪地质, 2018, 38(4): 179−192.

    Cao Hong, Sun Zhilei, Liu Changling, et al. Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 179−192.
    [20]
    Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26): 2828−2838. doi: 10.1007/s11434-011-4619-4
    [21]
    Mercier-Langevin P, Hannington M D, Dubé B, et al. The gold content of volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 2011, 46(5): 509−539.
    [22]
    Pantó G, Pantó G. Electron-probe check of fe-distribution in sphalerite grains of the Nagybörzsöny hydrothermal ore deposits, Hungary[J]. Mineralium Deposita, 1972, 7(2): 126−140. doi: 10.1007/BF00207150
    [23]
    Georgen J E, Lin Jian, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283−300.
    [24]
    Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
    [25]
    李小虎, 初凤友, 雷吉江, 等. 现代海底超镁铁质岩系热液系统与地质意义[J]. 海洋地质与第四纪地质, 2008, 28(4): 133−139.

    Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. Characteristics of seafloor ultramafic hosted hydrothermal systems and the implications[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 133−139.
    [26]
    Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001, 177(3/4): 341−349.
    [27]
    Tao Chunhui, Lin Jian, Guo Shiqin. Discovery of the fi rst active hydrothermal vent fi eld at the ultraslow spreading Southwest Indian Ridge: the Chinese DY115–19 Cruise[J]. InterRidge News, 2007, 16: 25−26.
    [28]
    陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J]. 科学通报, 2011, 56(28/29): 2413−2423.

    Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimney from the 49°39′E hydrothermal field on Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(28/29): 2413−2423.
    [29]
    Liao Shili, Tao Chunhui, Jamieson J W, et al. Oxidizing fluids associated with detachment hosted hydrothermal systems: example from the Suye hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Geochimica et Cosmochimica Acta, 2022, 328: 19−36. doi: 10.1016/j.gca.2022.04.025
    [30]
    Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51°E)[J]. Acta Oceanologica Sinica, 2013, 32(12): 87−95. doi: 10.1007/s13131-013-0394-1
    [31]
    Zhu Jian, Lin Jian, Chen Y J, et al. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge[J]. Geophysical Research Letters, 2010, 37(18): L18303.
    [32]
    Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w
    [33]
    Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 degrees C and 300 degrees C[J]. Economic Geology, 1975, 70(4): 806−823. doi: 10.2113/gsecongeo.70.4.806
    [34]
    李军, 孙治雷, 黄威, 等. 现代海底热液过程及成矿[J]. 地球科学-中国地质大学学报, 2014, 39(3): 312−324.

    Li Jun, Sun Zhilei, Huang Wei, et al. Modern seafloor hydrothermal processes and mineralization[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(3): 312−324.
    [35]
    Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045
    [36]
    Zhang Jing, Deng Jun, Chen Huayong, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557−575. doi: 10.1016/j.gr.2013.11.003
    [37]
    Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111−1141. doi: 10.2113/gsecongeo.104.8.1111
    [38]
    De Ronde C E J, Massoth G J, Butterfield D A, et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand[J]. Mineralium Deposita, 2011, 46(5): 541−584.
    [39]
    Keith M, Haase K M, Klemd R, et al. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus[J]. Chemical Geology, 2016, 423: 7−18. doi: 10.1016/j.chemgeo.2015.12.012
    [40]
    Simon G, Huang Hui, Penner-Hahn J E, et al. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 1999, 84(7/8): 1071−1079.
    [41]
    Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011
    [42]
    Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129−149. doi: 10.1016/j.oregeorev.2014.05.006
    [43]
    Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 335−345.
    [44]
    Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 1933−1949. doi: 10.1016/0016-7037(95)00118-2
    [45]
    Maslennikov V V, Maslennikova S P, Large R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64−106. doi: 10.1016/j.oregeorev.2016.09.012
    [46]
    Gammons C H, Williams-Tones A E. The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300°C: new data on the stability of Au (1) chloride complexes in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3453−3468. doi: 10.1016/0016-7037(95)00234-Q
    [47]
    Widler A M, Seward T M. The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 383−402. doi: 10.1016/S0016-7037(01)00791-8
    [48]
    Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009, 5(5): 281−287. doi: 10.2113/gselements.5.5.281
    [49]
    Benning L G, Seward T M. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150−400°C and 500−1500 bar[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849−1871. doi: 10.1016/0016-7037(96)00061-0
    [50]
    Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS) at 350 to 450°C and 500 bars[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2931−2947. doi: 10.1016/S0016-7037(98)00209-9
    [51]
    Stefánsson A, Seward T M. Gold (I) complexing in aqueous sulphide solutions to 500°C at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4121−4143. doi: 10.1016/j.gca.2004.04.006
    [52]
    Mann A W. Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia[J]. Economic Geology, 1984, 79(1): 38−49. doi: 10.2113/gsecongeo.79.1.38
    [53]
    Gammons C H, Williams-Jones A E. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic Geology, 1997, 92(1): 45−59. doi: 10.2113/gsecongeo.92.1.45
    [54]
    Seward T M, Williams-Jones A E, Migdisov A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[J]. Treatise on Geochemistry (Second Edition), 2014, 13: 29−57.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (305) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return