Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
Gao Xinyu,Wang Tianhao,Su Hua, et al. Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea[J]. Haiyang Xuebao,2023, 45(5):90–106 doi: 10.12284/hyxb2023058
Citation: Gao Xinyu,Wang Tianhao,Su Hua, et al. Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea[J]. Haiyang Xuebao,2023, 45(5):90–106 doi: 10.12284/hyxb2023058

Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea

doi: 10.12284/hyxb2023058
  • Received Date: 2022-08-08
  • Rev Recd Date: 2022-11-17
  • Available Online: 2022-12-08
  • Publish Date: 2023-05-01
  • Quantitative analysis on the properties of marine phytoplankton bloom events is helpful to understand the marine ecology, environment, and dynamic processes. In the South China Sea, remote sensing is vulnerable to clouds. Previous studies were mostly conducted with discontinuous observation or remote sensing data, which failed to comprehensively understand the characteristics and controlling factors of marine bloom events in the South China Sea. This study applied the statistical framework for defining marine heat waves, based on previously reconstructed daily full coverage remotely sensed chlorophyll a product from 2005 to 2019, to extract marine bloom events in two representative subregions, i.e., the northwestern Luzon in winter and southeastern Vietnam in summer. The duration, intensity, and corresponding long-term trends of marine bloom events in the two representative sea areas were analyzed. The results showed that the bloom frequency in the Luzon Strait has decreased, while the intensity has increased. These trends were significant in most areas for the winter Luzon Strait, while the trends for most of the summer Vietnam coasts were not significant. We further analyzed the influencing factors of marine bloom events and found that the winds (positive correlation) and sea surface temperature (negative correlation) had the greatest impacts on the bloom events. In both two representative sea areas, the marine bloom events were mainly dominated by upwelling, and the wind was the most important influencing factor. Analysis on the precursor conditions of marine bloom events found that the sub-mesoscale activity represented by the temperature front is also an important influencing factor. The study applied in South China Sea as a case study, as well can provide a new perspective to study marine ecosystem and environment.
  • loading
  • [1]
    Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment[J]. Limnology and Oceanography, 2006, 51(1part2): 377−384. doi: 10.4319/lo.2006.51.1_part_2.0377
    [2]
    Werdell P J, Bailey S W, Franz B A, et al. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua[J]. Remote Sensing of Environment, 2009, 113(6): 1319−1330. doi: 10.1016/j.rse.2009.02.012
    [3]
    王正, 毛志华, 李晓娟. 气候变化对南海浮游植物藻华形成的影响研究进展[J]. 环境污染与防治, 2017, 39(12): 1384−1390.

    Wang Zheng, Mao Zhihua, Li Xiaojuan. Research progress in the influence of global change on phytoplankton blooms of the South China Sea[J]. Environmental Pollution & Control, 2017, 39(12): 1384−1390.
    [4]
    刘昕, 王静, 程旭华, 等. 南海叶绿素浓度的时空变化特征分析[J]. 热带海洋学报, 2012, 31(4): 42−48. doi: 10.3969/j.issn.1009-5470.2012.04.008

    Liu Xin, Wang Jing, Cheng Xuhua, et al. The temporal and spatial evolution of chlorophyll-a concentration in the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(4): 42−48. doi: 10.3969/j.issn.1009-5470.2012.04.008
    [5]
    Pan Gang, Chai Fei, Tang Danling, et al. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model[J]. Ecological Modelling, 2017, 356: 38−47. doi: 10.1016/j.ecolmodel.2017.04.013
    [6]
    Huang Lei, Zhao Hui, Pan Jiayi, et al. Remote sensing observations of phytoplankton increases triggered by successive typhoons[J]. Frontiers of Earth Science, 2017, 11(4): 601−608. doi: 10.1007/s11707-016-0608-x
    [7]
    Lee J H, Moon J H, Kim T. Typhoon-triggered phytoplankton bloom and associated upper-ocean conditions in the northwestern pacific: evidence from satellite remote sensing, argo profile, and an ocean circulation model[J]. Journal of Marine Science and Engineering, 2020, 8(10): 788. doi: 10.3390/jmse8100788
    [8]
    Qiu Dajun, Zhong Yu, Chen Yongqiang, et al. Short-term phytoplankton dynamics during typhoon season in and near the pearl river estuary, South China Sea[J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(2): 274−292. doi: 10.1029/2018JG004672
    [9]
    Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49(8): 1387−1412. doi: 10.1016/S0967-0637(02)00035-3
    [10]
    Siswanto E, Horii T, Iskandar I, et al. Impacts of climate changes on the phytoplankton biomass of the Indonesian Maritime Continent[J]. Journal of Marine Systems, 2020, 212: 103451. doi: 10.1016/j.jmarsys.2020.103451
    [11]
    Zhang Min, Zhang Yuanling, Shu Qi, et al. Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean[J]. Science of the Total Environment, 2018, 612: 1141−1148. doi: 10.1016/j.scitotenv.2017.08.303
    [12]
    Sharma P, Singh A, Marinov I, et al. Contrasting ENSO types with satellite-derived ocean phytoplankton biomass in the tropical Pacific[J]. Geophysical Research Letters, 2019, 46(11): 5987−5996. doi: 10.1029/2018GL080689
    [13]
    Wei Qinsheng, Fu Mingzhu, Sun Junchuan, et al. Seasonal physical fronts and associated biogeochemical-ecological effects off the Jiangsu shoal in the western Yellow Sea, China[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2020JC016304.
    [14]
    Li Q P, Zhou Weiwen, Chen Yinchao, et al. Phytoplankton response to a plume front in the northern South China Sea[J]. Biogeosciences, 2018, 15(8): 2551−2563. doi: 10.5194/bg-15-2551-2018
    [15]
    Li Weiqi, Ge Jianzhong, Ding Pingxing, et al. Effects of dual fronts on the spatial pattern of chlorophyll a concentrations in and off the Changjiang River Estuary[J]. Estuaries and Coasts, 2021, 44(5): 1408−1418. doi: 10.1007/s12237-020-00893-z
    [16]
    Dawson H R S, Strutton P G, Gaube P. The unusual surface chlorophyll signatures of southern Ocean Eddies[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6053−6069. doi: 10.1029/2017JC013628
    [17]
    Guo Mingxian, Xiu Peng, Chai Fei, et al. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres[J]. Geophysical Research Letters, 2019, 46(22): 13217−13226. doi: 10.1029/2019GL085278
    [18]
    Xu Guangjun, Dong Changming, Liu Yu, et al. Chlorophyll rings around ocean eddies in the North Pacific[J]. Scientific Reports, 2019, 9(1): 2056. doi: 10.1038/s41598-018-38457-8
    [19]
    Lakshmi R S, Chatterjee A, Prakash S, et al. Biophysical interactions in driving the summer monsoon chlorophyll bloom off the Somalia coast[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015549.
    [20]
    Rintaka W E, Priyono B. Variation of seawater temperature and chlorophyll a prior to and during upwelling event in Bali Strait, Indonesia: from observation and model[J]. IOP Conference Series: Earth and Environmental Science, 2020, 429: 012002. doi: 10.1088/1755-1315/429/1/012002
    [21]
    Hu Qiwei, Chen Xiaoyan, Huang Wanyi, et al. Phytoplankton bloom triggered by eddy-wind interaction in the upwelling region east of Hainan Island[J]. Journal of Marine Systems, 2021, 214: 103470. doi: 10.1016/j.jmarsys.2020.103470
    [22]
    高慧, 赵辉, 沈春燕, 等. 冬季吕宋岛西北海域叶绿素时空变化特征[J]. 海洋学研究, 2018, 36(1): 75−85. doi: 10.3969/j.issn.1001-909X.2018.01.008

    Gao Hui, Zhao Hui, Shen Chunyan, et al. Spatial-temporal variation of winter phytoplankton blooms in the northwest of Luzon Island[J]. Journal of Marine Sciences, 2018, 36(1): 75−85. doi: 10.3969/j.issn.1001-909X.2018.01.008
    [23]
    Yuan Yuan, Zhou Wen, Chan J C L, et al. Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset[J]. International Journal of Climatology, 2008, 28(12): 1579−1587. doi: 10.1002/joc.1671
    [24]
    Liu Xin, Wang Jing, Cheng Xuhua, et al. Abnormal upwelling and chlorophyll-a concentration off South Vietnam in summer 2007[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C07021.
    [25]
    乐凤凤, 宁修仁. 南海北部浮游植物生物量的研究特点及影响因素[J]. 海洋学研究, 2006, 24(2): 60−69. doi: 10.3969/j.issn.1001-909X.2006.02.007

    Le Fengfeng, Ning Xiuren. Variations of the phytoplankton biomass in the northern South China Sea[J]. Journal of Marine Sciences, 2006, 24(2): 60−69. doi: 10.3969/j.issn.1001-909X.2006.02.007
    [26]
    Liu Fenfen, Tang Shilin, Huang Ruixin, et al. The asymmetric distribution of phytoplankton in anticyclonic eddies in the western South China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 120: 29−38. doi: 10.1016/j.dsr.2016.12.010
    [27]
    Guo Lin, Xiu Peng, Chai Fei, et al. Enhanced chlorophyll concentrations induced by Kuroshio intrusion fronts in the northern South China Sea[J]. Geophysical Research Letters, 2017, 44(22): 11565−11572. doi: 10.1002/2017GL075336
    [28]
    连展, 王新怡, 魏泽勋. 中国南海表层叶绿素a季节内变化特征及成因[J]. 海洋科学进展, 2020, 38(4): 649−661. doi: 10.3969/j.issn.1671-6647.2020.04.009

    Lian Zhan, Wang Xinyi, Wei Zexun. Features and driving mechanisms of the intra-seasonal variation of sea surface chlorophyll a in the South China Sea[J]. Advances in Marine Science, 2020, 38(4): 649−661. doi: 10.3969/j.issn.1671-6647.2020.04.009
    [29]
    古园园, 王静, 储小青, 等. 夏季南海西部叶绿素浓度高值带的年际变化[J]. 海洋学报, 2017, 39(6): 1−9.

    Gu Yuanyuan, Wang Jing, Chu Xiaoqing, et al. Interannual variability of the high chlorophyll a concentration strip in the western South China Sea during summer[J]. Haiyang Xuebao, 2017, 39(6): 1−9.
    [30]
    赵健. 上升流区藻华现象成因对比分析: 越南东部与索马里[D]. 湛江: 广东海洋大学, 2018.

    Zhao Jian. Contrastive analysis of the causes of phytoplankton blooms in tow upwelling areas: Vietnam and Somalia[D]. Zhanjiang: Guangdong Ocean University, 2018.
    [31]
    Lu Wenfang, Oey L Y, Liao Enhui, et al. Physical modulation to the biological productivity in the summer Vietnam upwelling system[J]. Ocean Science, 2018, 14(5): 1303−1320. doi: 10.5194/os-14-1303-2018
    [32]
    Zeng Jialing, Liu Chunli, Li Xue, et al. Comparative study of the variability and trends of phytoplankton biomass between spring and winter upwelling systems in the South China Sea[J]. Journal of Marine Systems, 2022, 231: 103738. doi: 10.1016/j.jmarsys.2022.103738
    [33]
    Wang Jiujuan, Tang Danling, Sui Yi. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait[J]. Journal of Marine Systems, 2010, 83(3/4): 141−149.
    [34]
    Lu Wenfang, Yan Xiaohai, Jiang Yuwu. Winter bloom and associated upwelling northwest of the Luzon Island: a coupled physical-biological modeling approach[J]. Journal of Geophysical Research: Oceans, 2015, 120(1): 533−546. doi: 10.1002/2014JC010218
    [35]
    Ning X, Chai Fei, Xue Huijie, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10): C10005. doi: 10.1029/2004JC002365
    [36]
    Chen Gengxin, Xiu Peng, Chai Fei. Physical and biological controls on the summer chlorophyll bloom to the east of Vietnam[J]. Journal of Oceanography, 2014, 70(3): 323−328. doi: 10.1007/s10872-014-0232-x
    [37]
    Tang Danling, Ni I H, Kester D R, et al. Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea[J]. Marine Ecology Progress Series, 1999, 191: 43−51. doi: 10.3354/meps191043
    [38]
    Shang Shaoling, Li Li, Li Jun, et al. Phytoplankton bloom during the northeast monsoon in the Luzon Strait bordering the Kuroshio[J]. Remote Sensing of Environment, 2012, 124: 38−48. doi: 10.1016/j.rse.2012.04.022
    [39]
    Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141: 227−238. doi: 10.1016/j.pocean.2015.12.014
    [40]
    Lu Wenfang, Gao Xinyu, Wu Zelun, et al. Framework to extract extreme phytoplankton bloom events with remote sensing datasets: a case study[J]. Remote Sensing, 2022, 14(15): 3557. doi: 10.3390/rs14153557
    [41]
    Wang Tianhao, Yu Peng, Wu Zelun, et al. Revisiting the intraseasonal variability of chlorophyll a in the adjacent Luzon Strait with a new gap-filled remote sensing data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4201311.
    [42]
    Belkin I M, O’reilly J E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery[J]. Journal of Marine Systems, 2009, 78(3): 319−326. doi: 10.1016/j.jmarsys.2008.11.018
    [43]
    Oliver E C J, Benthuysen J A, Darmaraki S, et al. Marine heatwaves[J]. Annual Review of Marine Science, 2021, 13: 313−342. doi: 10.1146/annurev-marine-032720-095144
    [44]
    陈更新. 南海中尺度涡的时空特征研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2010.

    Chen Gengxin. Mesoscale eddies in the South China Sea: mean properties and spatio-temporal variability[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010.
    [45]
    Xing Xiaogang, Qiu Guoqiang, Boss E, et al. Temporal and vertical variations of particulate and dissolved optical properties in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3779−3795. doi: 10.1029/2018JC014880
    [46]
    Zhao Hui, Zhao Jian, Sun Xingli, et al. A strong summer phytoplankton bloom southeast of Vietnam in 2007, a transitional year from El Niño to La Niña[J]. PLoS One, 2018, 13(1): e0189926. doi: 10.1371/journal.pone.0189926
    [47]
    陈莹, 赵辉. 南海中西部叶绿素时空变化特征分析[J]. 海洋学研究, 2021, 39(3): 84−94.

    Chen Ying, Zhao Hui. Spatio-temporal distribution of chlorophyll in the mid-western South China Sea[J]. Journal of Marine Sciences, 2021, 39(3): 84−94.
    [48]
    Chen C C, Shiah F K, Chung S W, et al. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling[J]. Journal of Marine Systems, 2006, 59(1/2): 97−110.
    [49]
    Lin Hongyang, Liu Zhiyu, Hu Jianyu, et al. Characterizing meso- to submesoscale features in the South China Sea[J]. Progress in Oceanography, 2020, 188: 102420. doi: 10.1016/j.pocean.2020.102420
    [50]
    赵辉, 齐义泉, 王东晓, 等. 南海叶绿素浓度季节变化及空间分布特征研究[J]. 海洋学报, 2005, 27(4): 45−52.

    Zhao Hui, Qi Yiquan, Wang Dongxiao, et al. Study on the features of chlorophyll a derived from SeaWiFS in the South China Sea[J]. Haiyang Xuebao, 2005, 27(4): 45−52.
    [51]
    Walker N D, Leben R R, Balasubramanian S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico[J]. Geophysical Research Letters, 2005, 32(18): L18610.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (456) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return