Citation: | Yu Mingge,Rui Xiaoping,Zou Yarong, et al. Research on automatic identification method of mangrove based on CU-Net model: Taking the Qi’ao Island in Zhuhai City, Guangdong Province as an example[J]. Haiyang Xuebao,2023, 45(3):125–135 doi: 10.12284/hyxb2023054 |
[1] |
Lee S Y, Primavera J H, Dahdouh-Guebas F, et al. Ecological role and services of tropical mangrove ecosystems: a reassessment[J]. Global Ecology and Biogeography, 2014, 23(7): 726−743. doi: 10.1111/geb.12155
|
[2] |
Giri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using Earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1): 154−159. doi: 10.1111/j.1466-8238.2010.00584.x
|
[3] |
Field C D. Rehabilitation of mangrove ecosystems: an overview[J]. Marine Pollution Bulletin, 1999, 37(8−12): 383−392. doi: 10.1016/S0025-326X(99)00106-X
|
[4] |
甄佳宁, 廖静娟, 沈国状. 1987以来海南省清澜港红树林变化的遥感监测与分析[J]. 湿地科学, 2019, 17(1): 44−51.
Zhen Jianing, Liao Jingjuan, Shen Guozhuang. Remote sensing monitoring and analysis on the dynamics of mangrove forests in Qinglan Habor of Hainan Province since 1987[J]. Wetland Science, 2019, 17(1): 44−51.
|
[5] |
Vaiphasa C, De Boer W F, Skidmore A K, et al. Impact of solid shrimp pond waste materials on mangrove growth and mortality: a case study from Pak Phanang, Thailand[J]. Hydrobiologia, 2007, 591(1): 47−57. doi: 10.1007/s10750-007-0783-6
|
[6] |
冯家莉, 刘凯, 朱远辉, 等. 无人机遥感在红树林资源调查中的应用[J]. 热带地理, 2015, 35(1): 35−42.
Feng Jiali, Liu Kai, Zhu Yuanhui, et al. Application of unmanned aerial vehicles to mangrove resources monitoring[J]. Tropical Geography, 2015, 35(1): 35−42.
|
[7] |
罗丹, 李正会, 王德智, 等. 海口市东寨港红树林面积动态变化分析[J]. 农村经济与科技, 2013, 24(2): 97−99. doi: 10.3969/j.issn.1007-7103.2013.02.042
Luo Dan, Li Zhenghui, Wang Dezhi, et al. Analysis on dynamic change of mangrove area in Dongzhai Port, Haikou City[J]. Rural Economy and Science-Technology, 2013, 24(2): 97−99. doi: 10.3969/j.issn.1007-7103.2013.02.042
|
[8] |
李春干, 代华兵. 红树林空间分布信息遥感提取方法[J]. 湿地科学, 2014, 12(5): 580−589. doi: 10.13248/j.cnki.wetlandsci.2014.05.007
Li Chungan, Dai Huabing. Extraction of mangroves spatial distribution using remotely sensed data[J]. Wetland Science, 2014, 12(5): 580−589. doi: 10.13248/j.cnki.wetlandsci.2014.05.007
|
[9] |
梁超, 刘利, 刘建强, 等. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取[J]. 海洋学报, 2020, 42(4): 104−112.
Liang Chao, Liu Li, Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao, 2020, 42(4): 104−112.
|
[10] |
Jia Mingming, Wang Zongming, Wang Chao, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17): 2043. doi: 10.3390/rs11172043
|
[11] |
Muhsoni F F, Sambah A B, Mahmudi M, et al. Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery[J]. International Journal of GEOMATE, 2018, 14(45): 42−51.
|
[12] |
Baloloy A B, Blanco A C, Ana R R C S, et al. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 95−117. doi: 10.1016/j.isprsjprs.2020.06.001
|
[13] |
Manna S, Raychaudhuri B. Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data[J]. International Journal of Remote Sensing, 2020, 41(3): 1019−1039. doi: 10.1080/01431161.2019.1655174
|
[14] |
徐芳, 张英, 翟亮, 等. 基于Sentinel-2的潮间红树林提取方法[J]. 测绘通报, 2020(2): 49−54.
Xu Fang, Zhang Ying, Zhai Liang, et al. Extraction method of intertidal mangrove by using Sentinel-2 images[J]. Bulletin of Surveying and Mapping, 2020(2): 49−54.
|
[15] |
刘凯, 龚辉, 曹晶晶, 等. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492−501.
Liu Kai, Gong Hui, Cao Jingjing, et al. Comparison of mangrove remote sensing classification based on multi-type UAV data[J]. Tropical Geography, 2019, 39(4): 492−501.
|
[16] |
李想, 刘凯, 朱远辉, 等. 基于资源三号影像的红树林物种分类研究[J]. 遥感技术与应用, 2018, 33(2): 360−369.
Li Xiang, Liu Kai, Zhu Yuanhui, et al. Study on mangrove species classification based on ZY-3 image[J]. Remote Sensing Technology and Application, 2018, 33(2): 360−369.
|
[17] |
Ballanti L, Blesius L, Hines E, et al. Tree species classification using hyperspectral imagery: a comparison of two classifiers[J]. Remote Sensing, 2016, 8(6): 445. doi: 10.3390/rs8060445
|
[18] |
Wing B M, Ritchie M W, Boston K, et al. Prediction of understory vegetation cover with airborne Lidar in an interior ponderosa pine forest[J]. Remote Sensing of Environment, 2012, 124: 730−741. doi: 10.1016/j.rse.2012.06.024
|
[19] |
Mondal P, Liu Xue, Fatoyinbo T E, et al. Evaluating combinations of sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa[J]. Remote Sensing, 2019, 11(24): 2928. doi: 10.3390/rs11242928
|
[20] |
蒙良莉. 基于哨兵多源遥感数据的红树林信息提取算法研究[D]. 南宁: 南宁师范大学, 2020.
Meng Liangli. Mangrove information extraction algorithm based on multi-source remote sensing data of sentinel[D]. Nanning: Nanning Normal University, 2020.
|
[21] |
Carranza-García M, García-Gutiérrez J, Riquelme J C. A framework for evaluating land use and land cover classification using convolutional neural networks[J]. Remote Sensing, 2019, 11(3): 274. doi: 10.3390/rs11030274
|
[22] |
黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141−146, 189.
Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141−146, 189.
|
[23] |
Lassalle G, Ferreira M P, La Rosa L E C, et al. Deep learning-based individual tree crown delineation in mangrove forests using very-high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189: 220−235. doi: 10.1016/j.isprsjprs.2022.05.002
|
[24] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
|
[25] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431−3440.
|
[26] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929−1958.
|
[27] |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: PMLR, 2015: 448−456.
|
[28] |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: JMLR, 2011: 315−323
|