Citation: | Yu Jun,Chen Hui,Zhu Daming, et al. A semi-supervised coral reef substrate classification method based on soft and hard collaborative decision making[J]. Haiyang Xuebao,2023, 45(4):154–164 doi: 10.12284/hyxb2023049 |
[1] |
逄岩, 许枫, 刘佳. 基于Gammatone滤波器组时频谱和卷积神经网络的海底底质分类[J]. 应用声学, 2021, 40(4): 510−517. doi: 10.11684/j.issn.1000-310X.2021.04.003
Pang Yan, Xu Feng, Liu Jia. Seabed sediment classification based on Gammatone filter banks time-frequency spectrum and convolutional neural networks[J]. Journal of Applied Acoustics, 2021, 40(4): 510−517. doi: 10.11684/j.issn.1000-310X.2021.04.003
|
[2] |
Gregr E J, Haggarty D R, Davies S C, et al. Comprehensive marine substrate classification applied to Canada’s Pacific shelf[J]. PLoS One, 2021, 16(10): e0259156. doi: 10.1371/journal.pone.0259156
|
[3] |
Reshitnyk L, Costa M, Robinson C, et al. Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters[J]. Remote Sensing of Environment, 2014, 153: 7−23. doi: 10.1016/j.rse.2014.07.016
|
[4] |
Wicaksono P, Aryaguna P A. Analyses of inter-class spectral separability and classification accuracy of benthic habitat mapping using multispectral image[J]. Remote Sensing Applications: Society and Environment, 2020, 19: 100335. doi: 10.1016/j.rsase.2020.100335
|
[5] |
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1−22. doi: 10.1111/j.2517-6161.1977.tb01600.x
|
[6] |
Pillay T, Cawthra H C, Lombard A T. Characterisation of seafloor substrate using advanced processing of multibeam bathymetry, backscatter, and sidescan sonar in Table Bay, South Africa[J]. Marine Geology, 2020, 429: 106332. doi: 10.1016/j.margeo.2020.106332
|
[7] |
Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 2−16. doi: 10.1016/j.isprsjprs.2009.06.004
|
[8] |
Furey T S, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000, 16(10): 906−914. doi: 10.1093/bioinformatics/16.10.906
|
[9] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[10] |
万佳馨, 任广波, 马毅. 基于WorldView-2和GF-2遥感影像的赵述岛礁坪底质变化研究[J]. 海洋科学, 2019, 43(10): 43−54.
Wan Jiaxin, Ren Guangbo, Ma Yi. Study on substrate changes of Zhaoshu reef flat based on WorldView-2 and GF-2 remote sensing images[J]. Marine Sciences, 2019, 43(10): 43−54.
|
[11] |
逄今朝, 任广波, 施祺, 等. 基于底质类型变化监测的2005−2018年西沙永乐群岛珊瑚礁白化分析[J]. 海洋科学, 2021, 45(6): 92−106.
Pang Jinzhao, Ren Guangbo, Shi Qi, et al. Analysis of coral reef bleaching in Yongle Islands of Xisha from 2005 to 2018 based on sediment types change monitoring[J]. Marine Sciences, 2021, 45(6): 92−106.
|
[12] |
董娟, 任广波, 胡亚斌, 等. 基于高分辨率遥感的珊瑚礁地貌单元体系构建和分类方法——以8波段Worldview-2影像为例[J]. 热带海洋学报, 2020, 39(4): 116−129.
Dong Juan, Ren Guangbo, Hu Yabin, et al. Construction and classification of coral reef geomorphic unit system based on high-resolution remote sensing: using 8-band Worldview-2 Image as an example[J]. Journal of Tropical Oceanography, 2020, 39(4): 116−129.
|
[13] |
李晓敏, 马毅, 吕喜玺. 南海珊瑚岛礁遥感分类体系和解译标志[J]. 海洋科学, 2021, 45(5): 23−30. doi: 10.11759/hykx20201110003
Li Xiaomin, Ma Yi, Lü Xixi. Establishing a remote sensing classification system and interpretation marks for the coral islands and reefs in the South China Sea[J]. Marine Sciences, 2021, 45(5): 23−30. doi: 10.11759/hykx20201110003
|
[14] |
Wan Jiaxin, Ma Yi. Multi-scale spectral-spatial remote sensing classification of coral reef habitats using CNN-SVM[J]. Journal of Coastal Research, 2020, 102(S1): 11−20.
|
[15] |
Huang Rongyong, Zhang Huiya, Yu Kefu. Analysis on the live coral cover around Weizhou Island using MODIS data[J]. Sensors, 2019, 19(19): 4309. doi: 10.3390/s19194309
|
[16] |
谭琨, 王雪, 杜培军. 结合深度学习和半监督学习的遥感影像分类进展[J]. 中国图象图形学报, 2019, 24(11): 1823−1841. doi: 10.11834/jig.190348
Tan Kun, Wang Xue, Du Peijun. Research progress of the remote sensing classification combining deep learning and semi-supervised learning[J]. Journal of Image and Graphics, 2019, 24(11): 1823−1841. doi: 10.11834/jig.190348
|
[17] |
King A, Bhandarkar S M, Hopkinson B M. A comparison of deep learning methods for semantic segmentation of coral reef survey images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 1394−1402.
|
[18] |
Li Jiwei, Knapp D E, Fabina N S, et al. A global coral reef probability map generated using convolutional neural networks[J]. Coral Reefs, 2020, 39(6): 1805−1815. doi: 10.1007/s00338-020-02005-6
|
[19] |
Wang Mengqiu, Hu Chuanmin. Satellite remote sensing of pelagic Sargassum macroalgae: the power of high resolution and deep learning[J]. Remote Sensing of Environment, 2021, 264: 112631. doi: 10.1016/j.rse.2021.112631
|
[20] |
耿艳磊, 陶超, 沈靖, 等. 高分辨率遥感影像语义分割的半监督全卷积网络法[J]. 测绘学报, 2020, 49(4): 499−508.
Geng Yanlei, Tao Chao, Shen Jing, et al. High-resolution remote sensing image semantic segmentation based on semi-supervised full convolution network method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 499−508.
|
[21] |
李鑫伟, 李彦胜, 张永军. 弱监督深度语义分割网络的多源遥感影像水体检测[J]. 中国图象图形学报, 2021, 26(12): 3015−3026.
Li Xinwei, Li Yansheng, Zhang Yongjun. Weakly supervised deep semantic segmentation network for water body extraction based on multi-source remote sensing imagery[J]. Journal of Image and Graphics, 2021, 26(12): 3015−3026.
|
[22] |
Xie Enze, Wang Wenhai, Yu Zhiding, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077−12090.
|
[23] |
Cheng Bowen, Collins M D, Zhu Yukun, et al. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE, 2020: 12475−12485.
|
[24] |
Yan Haotian, Zhang Chuang, Wu Ming. Lawin transformer: improving semantic segmentation transformer with multi-scale representations via large window attention[EB/OL]. (2022–01–05)[2022–08–15]. https://arxiv.org/abs/2201.01615.
|