Citation: | Wang Xinyi,Wu Chuyi,Wu Sensen, et al. Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean[J]. Haiyang Xuebao,2023, 45(3):147–158 doi: 10.12284/hyxb2023048 |
[1] |
Hannah L. Chapter 2—The Climate System and Climate Change[M]. London: Academic Press, 2011: 13−52.
|
[2] |
Friedlingstein P, Jones M W, O’Sullivan M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917−2005. doi: 10.5194/essd-14-1917-2022
|
[3] |
Bai Yan, Cai Weijun, He Xianqiang, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331−2349. doi: 10.1002/2014JC010632
|
[4] |
邱爽, 叶海军, 张玉红, 等. 基于航次观测和再分析资料的南海海表二氧化碳分压反演及变化机制分析[J]. 热带海洋学报, 2022, 41(1): 106−116. doi: 10.11978/2021030
Qiu Shuang, Ye Haijun, Zhang Yuhong, et al. Multi-linear regression of partial pressure of sea-surface carbon dioxide in the South China Sea and its mechanism[J]. Journal of Tropical Oceanography, 2022, 41(1): 106−116. doi: 10.11978/2021030
|
[5] |
Chen Shuangling, Hu Chuanmin, Byrne R H, et al. Remote estimation of surface pCO2 on the West Florida Shelf[J]. Continental Shelf Research, 2016, 128: 10−25. doi: 10.1016/j.csr.2016.09.004
|
[6] |
Nurdjaman S. Estimation of partial pressure of CO2 (pCO2) around mount Krakatau waters, Sunda Straits, Indonesia[J]. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 2021, 5(1): 25−31. doi: 10.51200/bjomsa.v5i1.2711
|
[7] |
Chen Shuangling, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
|
[8] |
Dixit A, Lekshmi K, Bharti R, et al. Net sea-air CO2 fluxes and modeled partial pressure of CO2 in open ocean of bay of Bengal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2462−2469. doi: 10.1109/JSTARS.2019.2902253
|
[9] |
Wang Yanjun, Li Xiaofeng, Song Jinming, et al. Carbon sinks and variations of pCO2 in the Southern Ocean from 1998 to 2018 based on a deep learning approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3495−3503. doi: 10.1109/JSTARS.2021.3066552
|
[10] |
Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
|
[11] |
Landschützer P, Gruber N, Bakker D C E. Decadal variations and trends of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2016, 30(10): 1396−1417. doi: 10.1002/2015GB005359
|
[12] |
Krishna K V, Shanmugam P, Nagamani P V. A multiparametric nonlinear regression approach for the estimation of global surface ocean pCO2 using satellite oceanographic data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6220−6235. doi: 10.1109/JSTARS.2020.3026363
|
[13] |
Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
|
[14] |
Bakker D C E, Pfeil B, Landa C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2016, 8(2): 383−413. doi: 10.5194/essd-8-383-2016
|
[15] |
Dickson A, Sabine C L, Christian J R. Guide to best practices for ocean CO2 measurements[R]. Sidney: North Pacific Marine Science Organization, 2007.
|
[16] |
Sathyendranath S, Brewin R J W, Brockmann C, et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI)[J]. Sensors, 2019, 19(19): 4285. doi: 10.3390/s19194285
|
[17] |
Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newsletter, 2008, 31: 13−21.
|
[18] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
|
[19] |
Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 18925−18930. doi: 10.1073/pnas.0708986104
|
[20] |
Sabine C L, Hankin S, Koyuk H, et al. Surface Ocean CO2 Atlas (SOCAT) gridded data products[J]. Earth System Science Data, 2013, 5(1): 145−153. doi: 10.5194/essd-5-145-2013
|
[21] |
Bates N R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades[J]. Journal of Geophysical Research: Oceans, 2007, 112(C9): C09013.
|
[22] |
González-Dávila M, Santana-Casiano J M. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995−10−02 to 2009−11−25 (NCEI Accession 0100064)[Z]. Dataset: NOAA National Centers for Environmental Information, 2012.
|