Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 3
Feb.  2023
Turn off MathJax
Article Contents
Wang Xinyi,Wu Chuyi,Wu Sensen, et al. Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean[J]. Haiyang Xuebao,2023, 45(3):147–158 doi: 10.12284/hyxb2023048
Citation: Wang Xinyi,Wu Chuyi,Wu Sensen, et al. Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean[J]. Haiyang Xuebao,2023, 45(3):147–158 doi: 10.12284/hyxb2023048

Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean

doi: 10.12284/hyxb2023048
  • Received Date: 2022-04-22
  • Rev Recd Date: 2022-10-12
  • Available Online: 2022-10-25
  • Publish Date: 2023-02-01
  • Ocean is an important carbon sink in nature. The sea-air carbon dioxide flux is usually estimated by the difference of partial pressure of carbon dioxide (pCO2) between the atmosphere and the sea surface. Due to the imbalance of observation data on temporal and spatial distribution and datasets used for prediction, there is still large room for improvement in spatial resolution for present reconstruction of pCO2 on sea surface. In order to fit the temporal and spatial variability under high spatial resolution better, based on the sea surface fugacity of carbon dioxide (fCO2) observations of the Surface Ocean CO2 Atlas (SOCAT) and other multi-source data including remote sensing data, the nonlinear relationship between sea surface pCO2 and physical, biological, optical factors was established by a XGBoost model and a weight model was built based on spatiotemporal frequency of samples. A 0.041 7°×0.041 7° monthly sea surface pCO2 dataset in Atlantic from 2000 to 2018 was finally constructed with correlation coefficient of 0.966, mean squared error of 8.087 μatm and mean error of 4.012 μatm on prediction dataset. The reconstruction is highly consistent to other similar reconstruction results on temporal and spatial trend and also gains advantage in spatial resolution.
  • loading
  • [1]
    Hannah L. Chapter 2—The Climate System and Climate Change[M]. London: Academic Press, 2011: 13−52.
    [2]
    Friedlingstein P, Jones M W, O’Sullivan M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917−2005. doi: 10.5194/essd-14-1917-2022
    [3]
    Bai Yan, Cai Weijun, He Xianqiang, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331−2349. doi: 10.1002/2014JC010632
    [4]
    邱爽, 叶海军, 张玉红, 等. 基于航次观测和再分析资料的南海海表二氧化碳分压反演及变化机制分析[J]. 热带海洋学报, 2022, 41(1): 106−116. doi: 10.11978/2021030

    Qiu Shuang, Ye Haijun, Zhang Yuhong, et al. Multi-linear regression of partial pressure of sea-surface carbon dioxide in the South China Sea and its mechanism[J]. Journal of Tropical Oceanography, 2022, 41(1): 106−116. doi: 10.11978/2021030
    [5]
    Chen Shuangling, Hu Chuanmin, Byrne R H, et al. Remote estimation of surface pCO2 on the West Florida Shelf[J]. Continental Shelf Research, 2016, 128: 10−25. doi: 10.1016/j.csr.2016.09.004
    [6]
    Nurdjaman S. Estimation of partial pressure of CO2 (pCO2) around mount Krakatau waters, Sunda Straits, Indonesia[J]. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 2021, 5(1): 25−31. doi: 10.51200/bjomsa.v5i1.2711
    [7]
    Chen Shuangling, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
    [8]
    Dixit A, Lekshmi K, Bharti R, et al. Net sea-air CO2 fluxes and modeled partial pressure of CO2 in open ocean of bay of Bengal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2462−2469. doi: 10.1109/JSTARS.2019.2902253
    [9]
    Wang Yanjun, Li Xiaofeng, Song Jinming, et al. Carbon sinks and variations of pCO2 in the Southern Ocean from 1998 to 2018 based on a deep learning approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3495−3503. doi: 10.1109/JSTARS.2021.3066552
    [10]
    Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [11]
    Landschützer P, Gruber N, Bakker D C E. Decadal variations and trends of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2016, 30(10): 1396−1417. doi: 10.1002/2015GB005359
    [12]
    Krishna K V, Shanmugam P, Nagamani P V. A multiparametric nonlinear regression approach for the estimation of global surface ocean pCO2 using satellite oceanographic data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6220−6235. doi: 10.1109/JSTARS.2020.3026363
    [13]
    Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
    [14]
    Bakker D C E, Pfeil B, Landa C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2016, 8(2): 383−413. doi: 10.5194/essd-8-383-2016
    [15]
    Dickson A, Sabine C L, Christian J R. Guide to best practices for ocean CO2 measurements[R]. Sidney: North Pacific Marine Science Organization, 2007.
    [16]
    Sathyendranath S, Brewin R J W, Brockmann C, et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI)[J]. Sensors, 2019, 19(19): 4285. doi: 10.3390/s19194285
    [17]
    Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newsletter, 2008, 31: 13−21.
    [18]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [19]
    Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 18925−18930. doi: 10.1073/pnas.0708986104
    [20]
    Sabine C L, Hankin S, Koyuk H, et al. Surface Ocean CO2 Atlas (SOCAT) gridded data products[J]. Earth System Science Data, 2013, 5(1): 145−153. doi: 10.5194/essd-5-145-2013
    [21]
    Bates N R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades[J]. Journal of Geophysical Research: Oceans, 2007, 112(C9): C09013.
    [22]
    González-Dávila M, Santana-Casiano J M. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995−10−02 to 2009−11−25 (NCEI Accession 0100064)[Z]. Dataset: NOAA National Centers for Environmental Information, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article views (542) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return