Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Xia Ruibin,Lu Chaoyue,Liang Chujin, et al. Analysis of the spatio-temporal variations of significant wave height in the northern South China Sea and the return period estimation methods of its extreme based on WW3[J]. Haiyang Xuebao,2023, 45(2):13–26 doi: 10.12284/hyxb2023045
Citation: Xia Ruibin,Lu Chaoyue,Liang Chujin, et al. Analysis of the spatio-temporal variations of significant wave height in the northern South China Sea and the return period estimation methods of its extreme based on WW3[J]. Haiyang Xuebao,2023, 45(2):13–26 doi: 10.12284/hyxb2023045

Analysis of the spatio-temporal variations of significant wave height in the northern South China Sea and the return period estimation methods of its extreme based on WW3

doi: 10.12284/hyxb2023045
  • Received Date: 2022-09-02
  • Rev Recd Date: 2022-10-23
  • Available Online: 2023-02-04
  • Publish Date: 2023-02-01
  • The spatio-temporal variations of significant wave height and its extremum in the northern South China Sea from 1996 to 2015 are analyzed based on the wave hindcast simulation by the third-generation wave model WaveWatch III (WW3). Two extreme value distribution methods, Pearson-III and Gumbel methods, have been used to estimate the return period of the extreme significant wave height in the northern South China Sea. The results show that the seasonal variation and spatial distribution of significant wave height in the northern South China Sea are consistent with the monsoon field, similar to the results of reanalysis data. It is high in autumn and winter and low in spring and summer, and decreases from the west part of the Luzon Strait to the southwest. But the extremum of significant wave height is strongly affected by the temporal resolution. The higher resolution (such as hourly), the more typhoon wave characteristics are displayed. After deducting the seasonal cycle signal, both the significant wave height and its annual extremum show an intense linear trend, increasing by 7.7% and 31.6% in the last 20 years respectively. There are several large value regions of the return period wave height in this area. They are related to the typhoon's track and intensity directly, indicating that typhoons are the primary mechanism causing extreme waves in this region. Comparing the Pearson-III and Gumbel distribution, it is found that if the extreme significant wave height was relatively low and the frequency decreased slowly with the growth of the extremum, the two methods are both accurate, with little difference which could be ignored. However, when the extreme significant wave height was much higher in one year than that in other years, the estimated result of the Pearson-III would be much higher than that of the Gumbel method, and also closer to the actual value. In other words, the Pearson-III extreme value distribution behaves better in this situation. This study shows that when the extreme significant wave height caused by a super typhoon is much higher than that in other years, the estimation from different methods differs greatly, which will significantly affect the assessment of the return period. Besides, the strong increasing trend of the extreme significant wave height in the northern South China Sea will also bring a non-negligible impact on the calculation of return period wave height and marine engineering protection in the future.
  • loading
  • [1]
    薛力. “马六甲困境”内涵辨析与中国的应对[J]. 世界经济与政治, 2010(10): 117−140.

    Xue Li. Malacca dilemma and China’s response[J]. World Economics and Politics, 2010(10): 117−140.
    [2]
    宋清润. 从“亚太再平衡”战略看美泰军事同盟关系[J]. 国际研究参考, 2015(2): 1−6.

    Song Qingrun. The US-Thailand military alliance from the perspective of “Asia-Pacific Rebalance” strategy[J]. International Study Reference, 2015(2): 1−6.
    [3]
    宋建欣. 改革开放以来中国共产党维护南海主权权益研究[D]. 长春: 吉林大学, 2020.

    Song Jianxin. Study on Chinese communist party safeguarding the sovereignty and rights and interests of the South China Sea since the reform and opening-up[D]. Changchun: Jilin University, 2020.
    [4]
    何小超, 王娴, 杨海军, 等. 南海深水油气资源的开发现状[C]//第十五届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2011.

    He Xiaochao, Wang Xian, Yang Haijun, et al. Development status of deepwater oil and gas resources in the South China Sea[C]//Proceedings of the 15th China Ocean (Shore) Engineering Symposium. Beijing: China Ocean Press, 2011.
    [5]
    王陆新, 潘继平, 杨丽丽. 全球深水油气勘探开发现状与前景展望[J]. 石油科技论坛, 2020, 39(2): 31−37.

    Wang Luxin, Pan Jiping, Yang Lili. Present conditions and prospect of global deepwater oil and gas exploration and development[J]. Petroleum Science and Technology Forum, 2020, 39(2): 31−37.
    [6]
    齐义泉, 朱伯承, 施平, 等. WWATCH模式模拟南海海浪场的结果分析[J]. 海洋学报, 2003, 25(4): 1−9.

    Qi Yiquan, Chu P C, Shi Ping, et al. Analysis of significant wave heights from WWATCH and TOPEX/Poseidon Altimetry[J]. Haiyang Xuebao, 2003, 25(4): 1−9.
    [7]
    Chu P C, Qi Yiquan, Chen Yuchun, et al. South China Sea wind-wave characteristics. part I: validation of WAVEWATCH-III using TOPEX/Poseidon data[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(11): 1718−1733. doi: 10.1175/JTECH1661.1
    [8]
    周良明, 吴伦宇, 郭佩芳, 等. 应用WAVEWATCH-Ⅲ模式对南海的波浪场进行数值计算, 统计分析和研究[J]. 热带海洋学报, 2007, 26(5): 1−8.

    Zhou Liangming, Wu Lunyu, Guo Peifang, et al. Simulation and study of wave in South China Sea using WAVEWATCH-Ⅲ[J]. Journal of Tropical Oceanography, 2007, 26(5): 1−8.
    [9]
    裘沙怡, 梁楚进, 董昌明, 等. 南海海面风、浪场时空变化特征及其关系分析[J]. 海洋学研究, 2013, 31(4): 1−9. doi: 10.3969/j.issn.1001-909X.2013.04.001

    Qiu Shayi, Liang Chujin, Dong Changming, et al. Analysis of the temporal and spatial variations in the wind and wave over the South China Sea[J]. Journal of Marine Sciences, 2013, 31(4): 1−9. doi: 10.3969/j.issn.1001-909X.2013.04.001
    [10]
    宗芳伊. 近20年南海波浪及波浪能分布、变化研究[D]. 青岛: 中国海洋大学, 2015.

    Zong Fangyi. Research on distributions and variations of sea wave and wave energy in South China Sea during recent 20 years[D]. Qingdao: Ocean University of China, 2015.
    [11]
    韩树宗, 董杨杨, 张水平, 等. 南海波浪时空变化特征研究[J]. 海洋湖沼通报, 2020(2): 1−9.

    Han Shuzong, Dong Yangyang, Zhang Shuiping, et al. Study of the temporal and spatial variations of wave in South China Sea[J]. Transactions of Oceanology and Limnology, 2020(2): 1−9.
    [12]
    Ou S H, Liau J M, Hsu T W, et al. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan[J]. Ocean Engineering, 2002, 29(8): 947−971. doi: 10.1016/S0029-8018(01)00049-X
    [13]
    徐尧. 南海台风浪与太平洋海浪的数值模拟[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2017.

    Xu Yao. Numerical modelling of typhoon waves in the South China Sea and waves in the Pacific Ocean[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2017.
    [14]
    Kim T R, Lee J H. Comparison of high wave hindcasts during typhoon Bolaven (1215) using SWAN and WAVEWATCH III Model[J]. Journal of Coastal Research, 2018, 85(S1): 1096−1100.
    [15]
    石洪源, 尤再进, 胡聪, 等. 不同台风合成风场方案在南海的适用性研究[J]. 海洋湖沼通报, 2018(6): 17−23.

    Shi Hongyuan, You Zaijin, Hu Cong, et al. A study on the applicability of different typhoon synthetic wind fields in the South China Sea[J]. Transactions of Oceanology and Limnology, 2018(6): 17−23.
    [16]
    林金波, 毛鸿飞, 吴光林, 等. 基于混合风场的南海台风浪数值模拟[J]. 广东海洋大学学报, 2021, 41(6): 44−52. doi: 10.3969/j.issn.1673-9159.2021.06.006

    Lin Jinbo, Mao Hongfei, Wu Guanglin, et al. Numerical modeling of typhoon waves in South China Sea based on mixed wind field[J]. Journal of Guangdong Ocean University, 2021, 41(6): 44−52. doi: 10.3969/j.issn.1673-9159.2021.06.006
    [17]
    陈晓斌, 周林, 史文丽, 等. 台风“梅花”风浪场和涌浪场特征分析[J]. 海洋科学进展, 2013, 31(1): 22−30.

    Chen Xiaobin, Zhou Lin, Shi Wenli, et al. Characteristics of wave and surge fields of Typhoon MUIFA[J]. Advances in Marine Science, 2013, 31(1): 22−30.
    [18]
    郑崇伟, 陈志禄, 贾本凯, 等. 中国海海表风场、风浪、涌浪、混合浪场时空分布特征研究[J]. 中国科技信息, 2011(10): 32−33.

    Zheng Chongwei, Chen Zhilu, Jia Benkai, et al. Characteristics of sea surface wind field and wave field analysis in the China Sea[J]. China Science and Technology Information, 2011(10): 32−33.
    [19]
    候瑞科. 利用耿贝尔极值分布计算年最高水位[J]. 海洋通报, 1993, 12(3): 126−129.

    Hou Ruike. The annual maximum water level was calculated using the distribution of Gumbel extreme values[J]. Marine Science Bulletin, 1993, 12(3): 126−129.
    [20]
    葛黎丽, 屈衍, 张志旭, 等. 南海深水区风、浪、流多年一遇重现期极值的推算[J]. 中国海上油气, 2009, 21(3): 207−210. doi: 10.3969/j.issn.1673-1506.2009.03.016

    Ge Lili, Qu Yan, Zhang Zhixu, et al. The calculation of the extreme wind, wave and current for return periods in the deep water area of the South China Sea[J]. China Offshore Oil and Gas, 2009, 21(3): 207−210. doi: 10.3969/j.issn.1673-1506.2009.03.016
    [21]
    江丽芳, 尹毅, 齐义泉, 等. 钦州湾台风浪的多年一遇极值推算[J]. 热带海洋学报, 2012, 31(4): 8−16. doi: 10.3969/j.issn.1009-5470.2012.04.004

    Jiang Lifang, Yin Yi, Qi Yiquan, et al. The extreme wave parameters in the Qinzhou Bay during typhoon passages[J]. Journal of Tropical Oceanography, 2012, 31(4): 8−16. doi: 10.3969/j.issn.1009-5470.2012.04.004
    [22]
    王志旭, 陈子燊. 极值波高Weibull分布的参数估计方法对比分析[J]. 海洋通报, 2013, 32(2): 127−132.

    Wang Zhixu, Chen Zishen. Comparative analysis on the parameter estimation methods of Weibull distribution of extreme wave heights[J]. Marine Science Bulletin, 2013, 32(2): 127−132.
    [23]
    Liu Guilin, Gao Zhikang, Chen Baiyu, et al. Extreme values of storm surge elevation in Hangzhou Bay[J]. Ships and Offshore Structures, 2020, 15(4): 431−442. doi: 10.1080/17445302.2019.1661618
    [24]
    韩树宗, 王海龙, 郭佩芳. 利用卫星高度计资料进行多年一遇极值波高推算的方法研究[J]. 青岛海洋大学学报, 2003, 33(5): 657−664.

    Han Shuzong, Wang Hailong, Guo Peifang. A study of extreme SWH estimation method by using satellite altimeter data[J]. Journal of Ocean University of Qingdao, 2003, 33(5): 657−664.
    [25]
    中华人民共和国交通部. JTJ 213-98, 海港水文规范[S]. 北京: 中华人民共和国交通部, 1999.

    Ministry of Transport of the People’s Republic of China. JTJ 213-98, Code for sea port hydrology[S]. Beijing: Ministry of Transport of the People’s Republic of China,1999.
    [26]
    吴萌萌, 王毅, 万莉颖, 等. WAVEWATCH III模式在全球海域的数值模拟试验及结果分析[J]. 海洋预报, 2016, 33(5): 31−40. doi: 10.11737/j.issn.1003-0239.2016.05.004

    Wu Mengmeng, Wang Yi, Wan Liying, et al. Numerical simulation experiments and analysis using WAVEWATCH III in the global ocean[J]. Marine Forecasts, 2016, 33(5): 31−40. doi: 10.11737/j.issn.1003-0239.2016.05.004
    [27]
    Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1979 to present[R]. Reading: European Centre for Medium-Range Weather Forecasts, 2019: 252–266.
    [28]
    王彦俊. 中国近海台风路径集合数据集(1945–2021)[EB/OL]. (2022–06–10) [2022–09–01]. http://dx. doi.org/10.12157/IOCAS.20210804.001.

    Wang Yanjun. A dataset of typhoon tracks in offshore China (1945–2021)[EB/OL]. (2022–06–10) [2022–09–01]. http://dx. doi.org/10.12157/IOCAS.20210804.001.
    [29]
    李明杰, 齐鹏, 侯一筠. 山东沿岸多年一遇最高水位计算[J]. 海洋科学, 2009, 33(11): 78−81.

    Li Mingjie, Qi Peng, Hou Yijun. Computation of highest water levels of multiyear return periods along the coast of Shandong[J]. Marine Sciences, 2009, 33(11): 78−81.
    [30]
    马智群. 陕西省淳化县暴雨强度公式推求研究[D]. 西安: 长安大学, 2019.

    Ma Zhiqun. The research of storm intensity formula in Chunhua country, Shanxi Province[D]. Xi’an: Chang’an University, 2019.
    [31]
    孙玉芳. 基于Matlab开发环境的皮尔逊Ⅲ型频率曲线分析软件研发[J]. 山西水利科技, 2014(2): 61−62, 70.

    Sun Yufang. Software development for analyzing pearson type III frequency curve based on matlab environment[J]. Shanxi Hydrotechnics, 2014(2): 61−62, 70.
    [32]
    王焕. 南海海域波浪时空变化特征分析及有效波高预测研究[D]. 湛江: 广东海洋大学, 2021.

    Wang Huan. Analysis of spatial-temporal characteristics of waves and prediction of significant wave height in the South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2021.
    [33]
    练江帆, 梁必骐, 郑新江. 9615号台风特点及其原因分析[J]. 中山大学学报(自然科学版), 1998, 37(2): 85−90.

    Lian Jiangfan, Liang Biqi, Zheng Xinjiang. The analysis of the characteristics and causes of typhoon sally[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1998, 37(2): 85−90.
    [34]
    邰佳爱, 张长宽, 宋立荣. 强台风0814(黑格比)和9615(莎莉)台风暴潮珠江口内超高潮位分析[J]. 海洋通报, 2009, 28(6): 14−18. doi: 10.3969/j.issn.1001-6392.2009.06.003

    Tai Jiaai, Zhang Changkuan, Song Lirong. Super high water levels due to intense typhoons 0814 (Hagupit) and 9615 (Sally) in the Peal River Estuary[J]. Marine Science Bulletin, 2009, 28(6): 14−18. doi: 10.3969/j.issn.1001-6392.2009.06.003
    [35]
    中华人民共和国水利部. SL 654-2014, 水利水电工程合理使用年限及耐久性设计规范[S]. 北京: 中国水利水电出版社, 2014.

    Ministry of Water Resources of the People's Republic of China. SL 654-2014, Code for rational service life and durability design of water resources and hydropower projects[S]. Beijing: China Water Conservancy and Hydropower Press, 2014.
    [36]
    Pham D T, Switzer A D, Huerta G, et al. Spatiotemporal variations of extreme sea levels around the South China Sea: assessing the influence of tropical cyclones, monsoons and major climate modes[J]. Natural Hazards, 2019, 98(3): 969−1001. doi: 10.1007/s11069-019-03596-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (492) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return