Citation: | Jiang Chao,Chen Jie,Jiang Changbo, et al. Experimental study on settlement of rod coral sand in stagnant water[J]. Haiyang Xuebao,2023, 45(4):57–67 doi: 10.12284/hyxb2023043 |
[1] |
孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1−8.
Sun Zongxun. Engineering properties of coral sands in Nansha Islands[J]. Journal of Tropical Oceanography, 2000, 19(2): 1−8.
|
[2] |
沈扬, 冯照雁, 邓珏, 等. 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316
Shen Yang, Feng Zhaoyan, Deng Jue, et al. Model test on bearing capacity of coral sand foundation in the South China Sea[J]. Rock and Soil Mechanics, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316
|
[3] |
Yang Yongkang, Yang Wu, Feng Chunyan. Experimental research on geotechnical engineering characteristics of coral reef in Xisha Islands[J]. IOP Conference Series: Earth and Environmental Science, 2021, 783(1): 012052. doi: 10.1088/1755-1315/783/1/012052
|
[4] |
Ye Jianhong, Shan Jipeng, Zhou Haoran, et al. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the South China Sea—Experimental verification[J]. Ocean Engineering, 2021, 235: 109325. doi: 10.1016/j.oceaneng.2021.109325
|
[5] |
Lokier S W, Fiorini F. Temporal evolution of a carbonate coastal system, Abu Dhabi, United Arab Emirates[J]. Marine Geology, 2016, 381: 102−113. doi: 10.1016/j.margeo.2016.09.001
|
[6] |
Milliman J D, Müller G, Förstner F. Recent Sedimentary Carbonates: Part 1 Marine Carbonates[M]. New York: Springer, 2012: 4.
|
[7] |
Wang Xing, Wu Yang, Cui Jie, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 803. doi: 10.3390/jmse8100803
|
[8] |
王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 武汉: 中国科学院岩土力学研究所, 2008: 82.
Wang Xinzhi. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha Islands[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008: 82.
|
[9] |
Wu Xuehui, Cai Yuanqiang, Xu Sifa, et al. Effects of size and shape on the crushing strength of coral sand particles under diametral compression test[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1829−1839. doi: 10.1007/s10064-020-01972-y
|
[10] |
Lade P V, Liggio C D Jr, Nam J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941−953. doi: 10.1061/(ASCE)GT.1943-5606.0000067
|
[11] |
李小梅, 王芳, 韩林, 等. 珊瑚砂蠕变特性的试验研究[J]. 岩土工程学报, 2020, 42(11): 2124−2130.
Li Xiaomei, Wang Fang, Han Lin, et al. Experimental study on creep properties of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2124−2130.
|
[12] |
薛鹏, 周先齐, 蔡燕燕, 等. 饱和珊瑚砂三轴蠕变特性及经验模型[J]. 岩土工程学报, 2020, 42(S2): 255−260.
Xue Peng, Zhou Xianqi, Cai Yanyan, et al. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255−260.
|
[13] |
吕亚茹, 王冲, 黄厚旭, 等. 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938
Lü Yaru, Wang Chong, Huang Houxu, et al. Study on particle structure and crushing behaviors of coral sand[J]. Rock and Soil Mechanics, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938
|
[14] |
孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061−1068.
Sun Yue, Xiao Yang, Zhou Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061−1068.
|
[15] |
Bian C, Chen J, Jiang C B, et al. Threshold of motion of coral sediment under currents in flume experiments[J/OL]. Sedimentology, (2023-01-28). https://onlinelibrary.wiley.com/doi/10.1111/sed.13082.
|
[16] |
Chen J, Yao Z, Jiang C B, et al. Experiment study of the evolution of coral sand particle clouds in water[J]. China Ocean Engineering, 2022, 36(5): 720−733. doi: 10.1007/s13344-022-0064-1
|
[17] |
Smith D A, Cheung K F. Settling characteristics of calcareous sand[J]. Journal of Hydraulic Engineering, 2003, 129(6): 479−483. doi: 10.1061/(ASCE)0733-9429(2003)129:6(479)
|
[18] |
Wang Yin, Zhou Lingxin, Wu Ye, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape[J]. Powder Technology, 2018, 326: 379−392. doi: 10.1016/j.powtec.2017.12.004
|
[19] |
Riazi A, Vila-Concejo A, Salles T, et al. Improved drag coefficient and settling velocity for carbonate sands[J]. Scientific Reports, 2020, 10(1): 9465. doi: 10.1038/s41598-020-65741-3
|
[20] |
Li Yanan, Yu Qian, Gao Shu, et al. Settling velocity and drag coefficient of platy shell fragments[J]. Sedimentology, 2020, 67(4): 2095−2110. doi: 10.1111/sed.12696
|
[21] |
金智涛, 郑建国, 张君, 等. 颗粒形状对珊瑚砂和石英砂沉降影响的试验研究[J]. 海洋通报, 2021, 40(4): 447−454.
Jin Zhitao, Zheng Jianguo, Zhang Jun, et al. Experimental study on the influence of particle shape on the settlement of coral sand and quartz sand[J]. Marine Science Bulletin, 2021, 40(4): 447−454.
|
[22] |
Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, 1901, 9: 1−141.
|
[23] |
Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: Wiley, 1986: 358.
|
[24] |
Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615−1626. doi: 10.1029/WR018i006p01615
|
[25] |
Wu Weiming, Wang S S Y. Formulas for sediment porosity and settling velocity[J]. Journal of Hydraulic Engineering, 2006, 132(8): 858−862. doi: 10.1061/(ASCE)0733-9429(2006)132:8(858)
|
[26] |
李大鸣, 吕小海, 焦润红. 泥沙静水沉降阻力系数[J]. 水利学报, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001
Li Daming, Lü Xiaohai, Jiao Runhong. Resistance coefficient of sediment deposition in still water[J]. Journal of Hydraulic Engineering, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001
|
[27] |
Maiklem W R. Some hydraulic properties of bioclastic carbonate grains[J]. Sedimentology, 1968, 10(2): 101−109. doi: 10.1111/j.1365-3091.1968.tb01102.x
|
[28] |
Corey A T. Influence of shape on the fall velocity of sand grains[D]. Colorado: Colorado State University, 1949: 29.
|
[29] |
Zingg T. Beitrag zur schotteranalyse[D]. Zurich: Swiss Federal Institute of Technology in Zurich, 1935: 124.
|
[30] |
Kim D, Son Y, Park J. Prediction of settling velocity of nonspherical soil particles using digital image processing[J]. Advances in Civil Engineering, 2018: 4647675.
|