Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 4
Mar.  2023
Turn off MathJax
Article Contents
Jiang Chao,Chen Jie,Jiang Changbo, et al. Experimental study on settlement of rod coral sand in stagnant water[J]. Haiyang Xuebao,2023, 45(4):57–67 doi: 10.12284/hyxb2023043
Citation: Jiang Chao,Chen Jie,Jiang Changbo, et al. Experimental study on settlement of rod coral sand in stagnant water[J]. Haiyang Xuebao,2023, 45(4):57–67 doi: 10.12284/hyxb2023043

Experimental study on settlement of rod coral sand in stagnant water

doi: 10.12284/hyxb2023043
  • Received Date: 2022-02-08
  • Rev Recd Date: 2022-09-08
  • Available Online: 2023-04-03
  • Publish Date: 2023-03-31
  • The settling velocity is an important physical parameter of coral sand. Because of the rod coral sand is obviously different from other shapes of coral sand, it is not suitable to apply the settling velocity formula of the existing coral sand for calculation. The rod coral sand was selected to study the settling velocity and its influencing factors for single particle settlement experiment in stagnant water in this study. By analyzing the effects of different equivalent particle sizes and shape coefficients on the settling velocity of rod coral sand, it is found that the settling velocity of rod coral sand is strongly correlated with the diameter of the volume-equivalent sphere and Corey shape coefficient. Based on the experimental data, an empirical formula suitable for calculating the settling velocity of rod coral sand is deduced, which enriches the theory of coastal sediment.
  • loading
  • [1]
    孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1−8.

    Sun Zongxun. Engineering properties of coral sands in Nansha Islands[J]. Journal of Tropical Oceanography, 2000, 19(2): 1−8.
    [2]
    沈扬, 冯照雁, 邓珏, 等. 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316

    Shen Yang, Feng Zhaoyan, Deng Jue, et al. Model test on bearing capacity of coral sand foundation in the South China Sea[J]. Rock and Soil Mechanics, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316
    [3]
    Yang Yongkang, Yang Wu, Feng Chunyan. Experimental research on geotechnical engineering characteristics of coral reef in Xisha Islands[J]. IOP Conference Series: Earth and Environmental Science, 2021, 783(1): 012052. doi: 10.1088/1755-1315/783/1/012052
    [4]
    Ye Jianhong, Shan Jipeng, Zhou Haoran, et al. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the South China Sea—Experimental verification[J]. Ocean Engineering, 2021, 235: 109325. doi: 10.1016/j.oceaneng.2021.109325
    [5]
    Lokier S W, Fiorini F. Temporal evolution of a carbonate coastal system, Abu Dhabi, United Arab Emirates[J]. Marine Geology, 2016, 381: 102−113. doi: 10.1016/j.margeo.2016.09.001
    [6]
    Milliman J D, Müller G, Förstner F. Recent Sedimentary Carbonates: Part 1 Marine Carbonates[M]. New York: Springer, 2012: 4.
    [7]
    Wang Xing, Wu Yang, Cui Jie, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 803. doi: 10.3390/jmse8100803
    [8]
    王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 武汉: 中国科学院岩土力学研究所, 2008: 82.

    Wang Xinzhi. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha Islands[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008: 82.
    [9]
    Wu Xuehui, Cai Yuanqiang, Xu Sifa, et al. Effects of size and shape on the crushing strength of coral sand particles under diametral compression test[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1829−1839. doi: 10.1007/s10064-020-01972-y
    [10]
    Lade P V, Liggio C D Jr, Nam J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941−953. doi: 10.1061/(ASCE)GT.1943-5606.0000067
    [11]
    李小梅, 王芳, 韩林, 等. 珊瑚砂蠕变特性的试验研究[J]. 岩土工程学报, 2020, 42(11): 2124−2130.

    Li Xiaomei, Wang Fang, Han Lin, et al. Experimental study on creep properties of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2124−2130.
    [12]
    薛鹏, 周先齐, 蔡燕燕, 等. 饱和珊瑚砂三轴蠕变特性及经验模型[J]. 岩土工程学报, 2020, 42(S2): 255−260.

    Xue Peng, Zhou Xianqi, Cai Yanyan, et al. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255−260.
    [13]
    吕亚茹, 王冲, 黄厚旭, 等. 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938

    Lü Yaru, Wang Chong, Huang Houxu, et al. Study on particle structure and crushing behaviors of coral sand[J]. Rock and Soil Mechanics, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938
    [14]
    孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061−1068.

    Sun Yue, Xiao Yang, Zhou Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061−1068.
    [15]
    Bian C, Chen J, Jiang C B, et al. Threshold of motion of coral sediment under currents in flume experiments[J/OL]. Sedimentology, (2023-01-28). https://onlinelibrary.wiley.com/doi/10.1111/sed.13082.
    [16]
    Chen J, Yao Z, Jiang C B, et al. Experiment study of the evolution of coral sand particle clouds in water[J]. China Ocean Engineering, 2022, 36(5): 720−733. doi: 10.1007/s13344-022-0064-1
    [17]
    Smith D A, Cheung K F. Settling characteristics of calcareous sand[J]. Journal of Hydraulic Engineering, 2003, 129(6): 479−483. doi: 10.1061/(ASCE)0733-9429(2003)129:6(479)
    [18]
    Wang Yin, Zhou Lingxin, Wu Ye, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape[J]. Powder Technology, 2018, 326: 379−392. doi: 10.1016/j.powtec.2017.12.004
    [19]
    Riazi A, Vila-Concejo A, Salles T, et al. Improved drag coefficient and settling velocity for carbonate sands[J]. Scientific Reports, 2020, 10(1): 9465. doi: 10.1038/s41598-020-65741-3
    [20]
    Li Yanan, Yu Qian, Gao Shu, et al. Settling velocity and drag coefficient of platy shell fragments[J]. Sedimentology, 2020, 67(4): 2095−2110. doi: 10.1111/sed.12696
    [21]
    金智涛, 郑建国, 张君, 等. 颗粒形状对珊瑚砂和石英砂沉降影响的试验研究[J]. 海洋通报, 2021, 40(4): 447−454.

    Jin Zhitao, Zheng Jianguo, Zhang Jun, et al. Experimental study on the influence of particle shape on the settlement of coral sand and quartz sand[J]. Marine Science Bulletin, 2021, 40(4): 447−454.
    [22]
    Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, 1901, 9: 1−141.
    [23]
    Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: Wiley, 1986: 358.
    [24]
    Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615−1626. doi: 10.1029/WR018i006p01615
    [25]
    Wu Weiming, Wang S S Y. Formulas for sediment porosity and settling velocity[J]. Journal of Hydraulic Engineering, 2006, 132(8): 858−862. doi: 10.1061/(ASCE)0733-9429(2006)132:8(858)
    [26]
    李大鸣, 吕小海, 焦润红. 泥沙静水沉降阻力系数[J]. 水利学报, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001

    Li Daming, Lü Xiaohai, Jiao Runhong. Resistance coefficient of sediment deposition in still water[J]. Journal of Hydraulic Engineering, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001
    [27]
    Maiklem W R. Some hydraulic properties of bioclastic carbonate grains[J]. Sedimentology, 1968, 10(2): 101−109. doi: 10.1111/j.1365-3091.1968.tb01102.x
    [28]
    Corey A T. Influence of shape on the fall velocity of sand grains[D]. Colorado: Colorado State University, 1949: 29.
    [29]
    Zingg T. Beitrag zur schotteranalyse[D]. Zurich: Swiss Federal Institute of Technology in Zurich, 1935: 124.
    [30]
    Kim D, Son Y, Park J. Prediction of settling velocity of nonspherical soil particles using digital image processing[J]. Advances in Civil Engineering, 2018: 4647675.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article views (303) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return