Citation: | Zhou Congyan,Jiang Tao,Hu Yipan, et al. Comparations of environmental dose rate measurements for optically stimulated luminescence dating on marine sediments[J]. Haiyang Xuebao,2023, 45(4):121–132 doi: 10.12284/hyxb2023041 |
[1] |
Huntley D J, Godfrey-Smith D I, Thewalt M L W. Optical dating of sediments[J]. Nature, 1985, 313(5998): 105−107. doi: 10.1038/313105a0
|
[2] |
张克旗. 释光测年中环境剂量率影响因素研究[J]. 地质力学学报, 2012, 18(1): 62−71.
Zhang Keqi. Quantitative calculations of environmental dose rate at different influencing factors in luminescence dating[J]. Journal of Geomechanics, 2012, 18(1): 62−71.
|
[3] |
李虎侯. 光释光断代[J]. 核电子学与探测技术, 2000, 20(3): 217−228.
Li Huhou. Optical luminescence dating[J]. Nuclear Electronics & Detection Technology, 2000, 20(3): 217−228.
|
[4] |
张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1): 183−203.
Zhang Keqi, Wu Zhonghai, Lü Tongyan, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183−203.
|
[5] |
卢演俦. 沉积物的光释光(OSL)测年简介[J]. 地质地球化学, 1990(1): 36−40.
Lu Yanchou. Introduction to optical release light (OSL) dating of sediments[J]. Earth and Environment, 1990(1): 36−40.
|
[6] |
Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57−73. doi: 10.1016/S1350-4487(99)00253-X
|
[7] |
Singarayer J S, Bailey R M. Further investigations of the quartz optically stimulated luminescence components using linear modulation[J]. Radiation Measurements, 2003, 37(4/5): 451−458.
|
[8] |
Thomas P J, Murray A S, Kjær K H, et al. Optically stimulated luminescence (OSL) dating of glacial sediments from Arctic Russia-depositional bleaching and methodological aspects[J]. Boreas, 2006, 35(3): 587−599. doi: 10.1080/03009480600781933
|
[9] |
Mauz B, Baeteman C, Bungenstock F, et al. Optical dating of tidal sediments: potentials and limits inferred from the North Sea coast[J]. Quaternary Geochronology, 2010, 5(6): 667−678. doi: 10.1016/j.quageo.2010.05.004
|
[10] |
Fuchs M, Kreutzer S, Fischer M, et al. OSL and IRSL dating of raised beach sand deposits along the southeastern coast of Norway[J]. Quaternary Geochronology, 2012, 10: 195−200. doi: 10.1016/j.quageo.2011.11.009
|
[11] |
Chen Guangquan, Yi Liang, Xu Xingyong, et al. Testing the standardized growth curve (SGC) to OSL dating coastal sediments from the South Bohai Sea, China[J]. Geochronometria, 2013, 40(2): 101−112. doi: 10.2478/s13386-013-0103-z
|
[12] |
Kim J C, Cheong D, Shin S, et al. OSL chronology and accumulation rate of the Nakdong deltaic sediments, southeastern Korean Peninsula[J]. Quaternary Geochronology, 2015, 30: 245−250. doi: 10.1016/j.quageo.2015.01.006
|
[13] |
Chen Jie, Yang Taibao, Matishov G G, et al. A luminescence dating study of loess deposits from the Beglitsa section in the Sea of Azov, Russia[J]. Quaternary International, 2018, 478: 27−37. doi: 10.1016/j.quaint.2017.11.017
|
[14] |
Möller P, Benediktsson Í Ö, Anjar J, et al. Data set on sedimentology, palaeoecology and chronology of Middle to Late Pleistocene deposits on the Taimyr Peninsula, Arctic Russia[J]. Data in Brief, 2019, 25: 104267. doi: 10.1016/j.dib.2019.104267
|
[15] |
Aitken M J. Thermoluminescence Dating[M]. London: Academic Press, 1985.
|
[16] |
Aitken M J. An Introduction to Optical Dating[M]. Oxford: Oxford University Press, 1998.
|
[17] |
Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts: a critical review[J]. Radiation Measurements, 2012, 47(9): 778−785. doi: 10.1016/j.radmeas.2012.04.004
|
[18] |
Brennan B J. Beta doses to spherical grains[J]. Radiation Measurements, 2003, 37(4/5): 299−303.
|
[19] |
Mejdahl V. Thermoluminescence dating: beta-dose attenuation in quartz grains[J]. Archaeometry, 1979, 21(1): 61−72. doi: 10.1111/j.1475-4754.1979.tb00241.x
|
[20] |
王同利. 释光测年中几种年剂量测量方法的对比[D]. 北京: 中国地震局地质研究所, 2006.
Wang Tongli. A comparison of methods for the annual radiation dose determination in luminescence dating[D]. Beijing: Institute of Geology, China Earthquake Administrator, 2006.
|
[21] |
Chen Yawen, Chen Y G, Murray A S, et al. Luminescence dating of neotectonic activity on the southwestern coastal plain, Taiwan[J]. Quaternary Science Reviews, 2003, 22(10/13): 1223−1229.
|
[22] |
Murray A, Buylaert J P, Thiel C. A luminescence dating intercomparison based on a Danish beach-ridge sand[J]. Radiation Measurements, 2015, 81: 32−38. doi: 10.1016/j.radmeas.2015.02.012
|
[23] |
Jankowski N R, Jacobs Z, Goldberg P. Optical dating and soil micromorphology at MacCauley’s Beach, New South Wales, Australia[J]. Earth Surface Processes and Landforms, 2015, 40(2): 229−242. doi: 10.1002/esp.3622
|
[24] |
姜涛, 胡亦潘, 周从艳, 等. 海洋沉积物释光测年现状与展望[J]. 地质科技通报, 2022, 41(5): 31−54.
Jiang Tao, Hu Yipan, Zhou Congyan, et al. A review of luminescence dating on marine sediments[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 31−54.
|
[25] |
Sugisaki S, Buylaert J P, Murray A S, et al. High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk[J]. Quaternary Geochronology, 2010, 5(2/3): 293−298.
|
[26] |
Madsen A T, Murray A S, Andersen T J, et al. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating[J]. Marine Geology, 2005, 214(1/3): 251−268.
|
[27] |
Madsen A T, Murray A S, Andersen T J, et al. Temporal changes of accretion rates on an estuarine salt marsh during the Late Holocene-Reflection of local sea level changes? The Wadden Sea, Denmark[J]. Marine Geology, 2007, 242(4): 221−233. doi: 10.1016/j.margeo.2007.03.001
|
[28] |
Madsen A T, Murray A S, Andersen T J, et al. Optical dating of young tidal sediments in the Danish Wadden Sea[J]. Quaternary Geochronology, 2007, 2(1/4): 89−94.
|
[29] |
Madsen A T, Murray A S, Andersen T J, et al. Spatial and temporal variability of sediment accumulation rates on two tidal flats in Lister Dyb tidal basin, Wadden Sea, Denmark[J]. Earth Surface Processes and Landforms, 2010, 35(13): 1556−1572. doi: 10.1002/esp.1999
|
[30] |
Bateman M D, Holmes P J, Carr A S, et al. Aeolianite and barrier dune construction spanning the last two glacial–interglacial cycles from the southern Cape coast, South Africa[J]. Quaternary Science Reviews, 2004, 23(14/15): 1681−1698.
|
[31] |
Bateman M D, Carr A S, Dunajko A C, et al. The evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene Wilderness barriers, South Africa[J]. Quaternary Science Reviews, 2011, 30(1/2): 63−81.
|
[32] |
Sugisaki S, Buylaert J P, Murray A S, et al. High resolution optically stimulated luminescence dating of a sediment core from the southwestern Sea of Okhotsk[J]. Geochemistry Geophysics Geosystems, 2012, 13(5): Q0AA22.
|
[33] |
Anderson A, Roberts R, Dickinson W, et al. Times of sand: sedimentary history and archaeology at the Sigatoka Dunes, Fiji[J]. Geoarchaeology, 2006, 21(2): 131−154. doi: 10.1002/gea.20094
|
[34] |
Polymeris G S, Kitis G, Liolios A K, et al. Luminescence dating of the top of a deep water core from the NESTOR site near the Hellenic Trench, East Mediterranean Sea[J]. Quaternary Geochronology, 2009, 4(1): 68−81. doi: 10.1016/j.quageo.2008.05.001
|
[35] |
Jakobsson M, Backman J, Murray A, et al. Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2): 1016.
|
[36] |
Berger G W. Trans-arctic-ocean tests of fine-silt luminescence sediment dating provide a basis for an additional geochronometer for this region[J]. Quaternary Science Reviews, 2006, 25(19/20): 2529−2551.
|
[37] |
Armitage S J. Optically stimulated luminescence dating of ocean drilling program core 658B: complications arising from authigenic uranium uptake and lateral sediment movement[J]. Quaternary Geochronology, 2015, 30: 270−274. doi: 10.1016/j.quageo.2015.03.002
|
[38] |
Armitage S J, Pinder R C. Testing the applicability of optically stimulated luminescence dating to ocean drilling program cores[J]. Quaternary Geochronology, 2017, 39: 124−130. doi: 10.1016/j.quageo.2017.02.008
|
[39] |
Olley J M, De Deckker P, Roberts R G, et al. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon[J]. Sedimentary Geology, 2004, 169(3/4): 175−189.
|
[40] |
Zander A, Degering D, Preusser F, et al. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE: radioactive disequilibria in the uranium decay series[J]. Quaternary Geochronology, 2007, 2(1/4): 123−128.
|
[41] |
De Deckker P, Arnold L J, van der Kaars S, et al. Marine isotope stage 4 in Australasia: a full glacial culminating 65, 000 years ago−global connections and implications for human dispersal[J]. Quaternary Science Reviews, 2019, 204: 187−207. doi: 10.1016/j.quascirev.2018.11.017
|
[42] |
Chivas A R, Garcı́a A, van der Kaars S, et al. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview[J]. Quaternary International, 2001, 83−85: 19−46. doi: 10.1016/S1040-6182(01)00029-5
|
[43] |
Jacobs Z, Roberts R G, Lachlan T J, et al. Development of the SAR TT-OSL procedure for dating Middle Pleistocene dune and shallow marine deposits along the southern Cape coast of South Africa[J]. Quaternary Geochronology, 2011, 6(5): 491−513.
|
[44] |
Wang Yong, Long Hao, Yi Liang, et al. OSL chronology of a sedimentary sequence from the inner-shelf of the East China Sea and its implication on post-glacial deposition history[J]. Quaternary Geochronology, 2015, 30: 282−287. doi: 10.1016/j.quageo.2015.06.005
|
[45] |
陈泓君, 黄文凯, 邱燕. 海南岛西南海域晚第四纪古水深反演[J]. 海洋地质与第四纪地质, 2017, 37(6): 128−139.
Chen Hongjun, Huang Wenkai, Qiu Yan. The inversion of Late Quaternary paleo-water depth in southwestern offshore Hainan Island[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 128−139.
|
[46] |
田伟之, 倪邦发, 陈细林, 等. 中子活化分析在当代无机痕量分析计量学中的作用Ⅰ. 相对法中子活化分析(NAA)作为比较基准法资格的论证[J]. 核化学与放射化学, 2004, 26(3): 129−140.
Tian Weizhi, Ni Bangfa, Chen Xilin, et al. Role of neutron activation analysis in metrology of modern inorganic trace analysis Ⅰ. Qualification of neutron activation analysis (NAA) as a primary ration method of measurement[J]. Journal of Nuclear and Radiochemistry, 2004, 26(3): 129−140.
|
[47] |
田伟之, 倪邦发, 王平生, 等. 中子活化分析在当代无机痕量分析计量学中的作用Ⅲ. NAA用于多元素取样行为的定量表征[J]. 核化学与放射化学, 2005, 27(2): 65−69.
Tian Weizhi, Ni Bangfa, Wang Pingsheng, et al. Role of neutron activation analysis in metrology of modern inorganic trace analysis Ⅲ. NAA in characterization of sampling behavior for multielements[J]. Journal of Nuclear and Radiochemistry, 2005, 27(2): 65−69.
|
[48] |
秦亚丽, 陈喆, 吴伟明, 等. 光释光测年中铀、钍、钾的NAA分析[J]. 核电子学与探测技术, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025
Qin Yali, Chen Zhe, Wu Weiming, et al. Determination of U, Th and K for optically stimulated luminescence dating by NAA[J]. Nuclear Electronics & Detection Technology, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025
|
[49] |
陈敏, 张成江, 倪师军. 仪器中子活化法研究核设施周围土壤中的铀、钍、钾[J]. 核化学与放射化学, 2010, 32(5): 315−320.
Chen Min, Zhang Chengjiang, Ni Shijun. Study on uranium, thorium, and potassium in soil around a nuclear installation by using INAA[J]. Journal of Nuclear and Radiochemistry, 2010, 32(5): 315−320.
|
[50] |
刘颖, 刘海臣, 李献华. 用ICP—MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552−558. doi: 10.3321/j.issn:0379-1726.1996.06.004
Liu Ying, Liu Haichen, Li Xianhua. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J]. Geochimica, 1996, 25(6): 552−558. doi: 10.3321/j.issn:0379-1726.1996.06.004
|
[51] |
韩佳, 卢新卫, 庞奖励, 等. γ谱法和ICP-MS法测定黄土样品中铀、钍含量的比较[J]. 陕西师范大学学报(自然科学版), 2005, 33(2): 119−121.
Han Jia, Lu Xinwei, Pang Jiangli, et al. Determination of uranium and thorium contents in loess by Gamma-ray (γ) spectrometry and ICP-MS[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2005, 33(2): 119−121.
|
[52] |
李君利. 实验室γ能谱测量与分析[M]. 北京: 人民交通出版社股份有限公司, 2014: 25−109.
Li Junli. Laboratory γ Energy Spectrum Measurement and Analysis[M]. Beijing: China Communications Press, 2014: 25−109.
|
[53] |
杨会丽, 陈杰. ORTEC GEM70P4-95 P型高纯锗γ谱仪的标定[J]. 核技术, 2012, 35(11): 854−858.
Yang Huili, Chen Jie. Calibration of the ORTEC P type Ge γ-ray spectrometer[J]. Nuclear Techniques, 2012, 35(11): 854−858.
|
[54] |
何乐龙, 辛文彩, 张剑, 等. 海洋沉积物光释光测年中铀、钍、钾的γ能谱法分析[J]. 海洋地质前沿, 2018, 34(12): 68−76.
He Lelong, Xin Wencai, Zhang Jian, et al. γ-Spectrometric determination of U, Th and K for OSL dating of marine sediments[J]. Marine Geology Frontiers, 2018, 34(12): 68−76.
|
[55] |
Murray A, Arnold L J, Buylaert J P, et al. Optically stimulated luminescence dating using quartz[J]. Nature Reviews Methods Primers, 2021, 1(1): 72. doi: 10.1038/s43586-021-00068-5
|
[56] |
Durcan J A, King G E, Duller G A T. DRAC: dose rate and age calculator for trapped charge dating[J]. Quaternary Geochronology, 2015, 28: 54−61. doi: 10.1016/j.quageo.2015.03.012
|
[57] |
Guérin G, Mercier N, Adamiec G. Dose-rate conversion factors: update[J]. Ancient TL, 2011, 29(1): 5−8.
|
[58] |
Brennan B J, Lyons R G, Phillips S W. Attenuation of alpha particle track dose for spherical grains[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1991, 18(1/2): 249−253.
|
[59] |
Aitken M J, Xie J. Moisture correction for annual gamma dose[J]. Ancient TL, 1990, 8(2): 6−9.
|
[60] |
Zimmerman D W. Thermoluminescent dating using fine grains from pottery[J]. Archaeometry, 1971, 13(1): 29−52. doi: 10.1111/j.1475-4754.1971.tb00028.x
|
[61] |
Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2/3): 497−500.
|
[62] |
Henderson G M, Anderson R F. The U-series toolbox for paleoceanography[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 493−531. doi: 10.2113/0520493
|
[63] |
Forman S L, Pierson J, Smith R P, et al. Assessing the accuracy of thermoluminescence for dating baked sediments beneath late Quaternary lava flows, Snake River Plain, Idaho[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15569−15576. doi: 10.1029/94JB00806
|
[64] |
Tuo Fei, Zhang Qing, Zhang Jing, et al. Inter-comparison exercise for determination of 226Ra, 232Th and 40K in soil and building material[J]. Applied Radiation and Isotopes, 2010, 68(12): 2335−2338. doi: 10.1016/j.apradiso.2010.04.023
|
[65] |
Barnes C E, Cochran J K. Uranium removal in oceanic sediments and the oceanic U balance[J]. Earth and Planetary Science Letters, 1990, 97(1/2): 94−101.
|
[66] |
Klinkhammer G P, Palmer M R. Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1799−1806. doi: 10.1016/0016-7037(91)90024-Y
|
[67] |
Chen J H, Edwards R L, Wasserburg G J. 238U, 234U and232Th in seawater[J]. Earth and Planetary Science Letters, 1986, 80(3/4): 241−251.
|
[68] |
Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169(1/2): 17−33.
|
[69] |
Robinson L F, Belshaw N S, Henderson G M. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1777−1789. doi: 10.1016/j.gca.2003.10.005
|
[70] |
Anderson R F, Lehuray A P, Fleisher M Q, et al. Uranium deposition in Saanich inlet sediments, Vancouver Island[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2205−2213. doi: 10.1016/0016-7037(89)90344-X
|