Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 3
Feb.  2023
Turn off MathJax
Article Contents
Yang Xinwei,Shao Yuhang,Zhao Haikun, et al. Two leading modes of environmental steering flow in the interannual time scale and their associations with tropical cyclone activity over the western North Pacific[J]. Haiyang Xuebao,2023, 45(3):1–13 doi: 10.12284/hyxb2023036
Citation: Yang Xinwei,Shao Yuhang,Zhao Haikun, et al. Two leading modes of environmental steering flow in the interannual time scale and their associations with tropical cyclone activity over the western North Pacific[J]. Haiyang Xuebao,2023, 45(3):1–13 doi: 10.12284/hyxb2023036

Two leading modes of environmental steering flow in the interannual time scale and their associations with tropical cyclone activity over the western North Pacific

doi: 10.12284/hyxb2023036
  • Received Date: 2021-10-10
  • Rev Recd Date: 2022-10-08
  • Available Online: 2022-11-10
  • Publish Date: 2023-02-01
  • Using the tropical cyclone (TC) best track data from the Shanghai Typhoon Research Institute of the China Meteorological Administration (CMA-STI) and the monthly mean reanalysis data of NCEP/NCAR, the interannual variability of the basin-scale large-scale environmental steering flow and the tropical cyclone activity in the western North Pacific (WNP) during peak season from July to September from 1979−2016 are investigated. The results show that: (1) There are two typical modes of summer large-scale environmental steering flow in the WNP at the inter-annual scale. The first typical mode is a dipole circulation with a meridional distribution, which is closely related to the eastern ENSO and the sea-air coupling mode in the WNP region. (2) The TC activity (generation location, tracks, intensity and duration) differs significantly between the two typical interannual mode anomaly years of the large-scale environment steering flow, but the differences have distinctly different characteristics for the two typical inter-annual modes. (3) The spatial distribution of TC generation location shows significant differences from north to south between the years of the first typical interannual mode anomalies of large-scale environment steering flow; the TC tracks, especially the northwestward and westward prevailing tracks, also have significant differences, and their average duration and intensity also show their corresponding significant differences. In the second major interannual mode anomaly years, the TC generation locations show significant east-west distribution especially in the southeast quadrant, and the differences in TC tracks are mainly in the northwestward and offshore steering prevailing tracks, and their mean durations and intensities also show significant differences.
  • loading
  • [1]
    伍荣生. 现代天气学原理[M]. 北京: 高等教育出版社, 1999.

    Wu Rongsheng. Principles of Modern Synoptic Meteorology[M]. Beijing: Higher Education Press, 1999.
    [2]
    Chan J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 99−128. doi: 10.1146/annurev.fluid.37.061903.175702
    [3]
    Wu Liguang, Wang Bin, Geng Shuqin. Growing typhoon influence on east Asia[J]. Geophysical Research Letters, 2005, 32(18): L18703.
    [4]
    王斌, Elsberry R L, 王玉清, 等. 热带气旋运动的动力学研究进展[J]. 大气科学, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15

    Wang Bin, Elsberry R L, Wang Yuqing, et al. Dynamics in tropical cyclone motion: a review[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15
    [5]
    Wu Liguang, Wang Bin. Assessing impacts of global warming on tropical cyclone tracks[J]. Journal of Climate, 2004, 17(8): 1686−1698. doi: 10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2
    [6]
    Ritchie E A, Holland G J. Large-scale patterns associated with tropical cyclogenesis in the western Pacific[J]. Monthly Weather Review, 1999, 127(9): 2027−2043. doi: 10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2
    [7]
    王慧, 丁一汇, 何金海. 西北太平洋夏季风的变化对台风生成的影响[J]. 气象学报, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009

    Wang Hui, Ding Yihui, He Jinhai. Influence of western North Pacific summer monsoon changes on typhoon genesis[J]. Acta Meteorologica Sinica, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009
    [8]
    Liu K S, Chan J C L. Interdecadal variability of western North Pacific tropical cyclone tracks[J]. Journal of Climate, 2008, 21(17): 4464−4476. doi: 10.1175/2008JCLI2207.1
    [9]
    赵海坤. 全球变暖背景下西北太平洋热带气旋活动变化机理研究[D]. 南京: 南京信息工程大学, 2012.

    Zhao Haikun. Study on the mechanism of tropical cyclone activity change over the western North Pacific under the backgrourld of global warming[D]. Nanjing: Nanjing University of Information Science and Technology, 2012.
    [10]
    Zhao Haikun, Wu Liguang, Zhou Weican. Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific[J]. Advances in Atmospheric Sciences, 2010, 27(6): 1361−1371. doi: 10.1007/s00376-010-9161-9
    [11]
    Zhao Haikun, Wu Liguang, Wang Ruifang. Decadal variations of intense tropical cyclones over the western North Pacific during 1948−2010[J]. Advances in Atmospheric Sciences, 2014, 31(1): 57−65. doi: 10.1007/s00376-013-3011-5
    [12]
    Zhou Xingyan, Lu Riyu, Chen Guanghua. Impact of interannual variation of synoptic disturbances on the tracks and landfalls of tropical cyclones over the western North Pacific[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1469−1477. doi: 10.1007/s00376-018-8055-0
    [13]
    苏源, 吴立广. 多时间尺度环流对热带气旋海棠(0505)路径的影响[J]. 气象科学, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001

    Su Yuan, Wu Liguang. Analysis of the multi-time scale circulation influences on the track of tropical cyclone Haitang (0505)[J]. Journal of the Meteorological Sciences, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001
    [14]
    Clark J D, Chu P S. Interannual variation of tropical cyclone activity over the central North Pacific[J]. Journal of the Meteorological Society of Japan, 2002, 80(3): 403−418.
    [15]
    何鹏程, 江静. PDO对西北太平洋热带气旋活动与大尺度环流关系的影响[J]. 气象科学, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004

    He Pengcheng, Jiang Jing. Effect of PDO on the relationships between large scale circulation and tropical cyclone activity over the western North Pacific[J]. Journal of the Meteorological Sciences, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004
    [16]
    Li Wenhong, Li Laifang, Deng Yi, et al. Impact of the interdecadal pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific[J]. Scientific Reports, 2015, 5: 12358. doi: 10.1038/srep12358
    [17]
    Yu Cai, Han Xiang, Zhao Haikun, et al. Enhanced predictability of rapidly intensifying tropical cyclones over the western North Pacific associated with snow depth changes over the Tibetan Plateau[J]. Journal of Climate, 2022, 35(7): 2093−2110.
    [18]
    Camargo S J, Sobel A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate, 2005, 18(15): 2996−3006. doi: 10.1175/JCLI3457.1
    [19]
    Zhao Haikun, Wu Liguang, Zhou Weican. Interannual changes of tropical cyclone intensity in the western North Pacific[J]. Journal of the Meteorological Society of Japan, 2011, 89(3): 243−253.
    [20]
    Zhao Haikun, Klotzbach P J, Chen Shaohua. Dominant influence of ENSO-like and global sea surface temperature patterns on changes in prevailing boreal summer tropical cyclone tracks over the western North Pacific[J]. Journal of Climate, 2020, 33(22): 9551−9565. doi: 10.1175/JCLI-D-19-0774.1
    [21]
    Zhan Ruifen, Wang Yuqing, Lei Xiaotu. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency[J]. Journal of Climate, 2011, 24(2): 509−521. doi: 10.1175/2010JCLI3808.1
    [22]
    Zhao Haikun, Wu Liguang. Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study[J]. Meteorology and Atmospheric Physics, 2014, 125(1/2): 89−101.
    [23]
    Wang Chao, Wang Bin, Wu Liguang. A region-dependent seasonal forecasting framework for tropical cyclone genesis frequency in the western North Pacific[J]. Journal of Climate, 2019, 32(23): 8415−8435. doi: 10.1175/JCLI-D-19-0006.1
    [24]
    Wang Chao, Wang Bin. Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects[J]. Climate Dynamics, 2019, 53(5/6): 2697−2714.
    [25]
    Wang Bin, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Journal of Climate, 2002, 15(13): 1643−1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
    [26]
    谢佩妍, 陶丽, 李俊徽, 等. 西北太平洋热带气旋在ENSO发展和衰减年的路径变化[J]. 大气科学, 2018, 42(5): 987−999.

    Xie Peiyan, Tao Li, Li Junhui, et al. Variation of tropical cyclone track in the western North Pacific during ENSO developing and decaying years[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 987−999.
    [27]
    Wang Bin, Wu Renguang, Fu X. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1517−1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [28]
    Zhang Renhe, Min Qingye, Su Jingzhi. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: role of the anomalous western North Pacific anticyclone[J]. Science China Earth Sciences, 2017, 60(6): 1124−1132. doi: 10.1007/s11430-016-9026-x
    [29]
    李慧敏, 徐海明, 李智玉. 厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响[J]. 气象学报, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042

    Li Huimin, Xu Haiming, Li Zhiyu. Inter-annual variation of the western North Pacific anomalous anticyclone during El Niño years and its impact[J]. Acta Meteorologica Sinica, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042
    [30]
    杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024

    Du Xinguan, Yu Jinhua. Contribution of environmental factors to the change of tropical cyclone frequency in the summer of enso developing and decaying years[J]. Journal of Tropical Meteorology, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024
    [31]
    Camargo S J, Robertson A W, Gaffney S J, et al. Cluster analysis of typhoon tracks. Part I: general properties[J]. Journal of Climate, 2007, 20(14): 3635−3653. doi: 10.1175/JCLI4188.1
    [32]
    Zhao Haikun, Lu Ying, Jiang Xianan, et al. A statistical intra-seasonal prediction model of extended boreal summer western North Pacific tropical cyclone genesis[J]. Journal of Climate, 2022, 35(8): 2459−2478.
    [33]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [34]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [35]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [36]
    董克勤, 刘治军. 台风路径与各等压面上基本气流的关系[J]. 气象学报, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016

    Dong Keqin, Liu Zhijun. The relationship between the typhoon track and the basic steering flow on each isobaric surface[J]. Acta Meteorol Sin, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016
    [37]
    George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships[J]. Journal of Applied Meteorology, 1976, 15(12): 1252−1264. doi: 10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2
    [38]
    Chan J C L, Gray W M. Tropical cyclone movement and surrounding flow relationships[J]. Monthly Weather Review, 1982, 110(10): 1354−1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
    [39]
    Gray W M. Summary of ONR sponsored tropical cyclone motion and future plans[R]. Monterey: Naval Postgraduate School, 1982.
    [40]
    North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [41]
    Yu Jinhua, Zheng Yingqing, Wu Qishu, et al. K-means clustering for classification of the northwestern Pacific tropical cyclone tracks[J]. Journal of Tropical Meteorology, 2016, 22(2): 127−135.
    [42]
    Wang Chunzai, Li Chunxiang, Mu Mu, et al. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dynamics, 2013, 40(11/12): 2887−2902.
    [43]
    Roeckner E, Arpe K, Bengtsson L, et al. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate[R]. Hamburg: Max-Planck-Institut fuer Meteorologie, 1996: 90.
    [44]
    Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906
    [45]
    Li R C Y, Zhou Wen, Shun Chiming, et al. Change in destructiveness of landfalling tropical cyclones over China in recent decades[J]. Journal of Climate, 2017, 30(9): 3367−3379. doi: 10.1175/JCLI-D-16-0258.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (384) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return