Citation: | Yang Xinwei,Shao Yuhang,Zhao Haikun, et al. Two leading modes of environmental steering flow in the interannual time scale and their associations with tropical cyclone activity over the western North Pacific[J]. Haiyang Xuebao,2023, 45(3):1–13 doi: 10.12284/hyxb2023036 |
[1] |
伍荣生. 现代天气学原理[M]. 北京: 高等教育出版社, 1999.
Wu Rongsheng. Principles of Modern Synoptic Meteorology[M]. Beijing: Higher Education Press, 1999.
|
[2] |
Chan J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 99−128. doi: 10.1146/annurev.fluid.37.061903.175702
|
[3] |
Wu Liguang, Wang Bin, Geng Shuqin. Growing typhoon influence on east Asia[J]. Geophysical Research Letters, 2005, 32(18): L18703.
|
[4] |
王斌, Elsberry R L, 王玉清, 等. 热带气旋运动的动力学研究进展[J]. 大气科学, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15
Wang Bin, Elsberry R L, Wang Yuqing, et al. Dynamics in tropical cyclone motion: a review[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15
|
[5] |
Wu Liguang, Wang Bin. Assessing impacts of global warming on tropical cyclone tracks[J]. Journal of Climate, 2004, 17(8): 1686−1698. doi: 10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2
|
[6] |
Ritchie E A, Holland G J. Large-scale patterns associated with tropical cyclogenesis in the western Pacific[J]. Monthly Weather Review, 1999, 127(9): 2027−2043. doi: 10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2
|
[7] |
王慧, 丁一汇, 何金海. 西北太平洋夏季风的变化对台风生成的影响[J]. 气象学报, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009
Wang Hui, Ding Yihui, He Jinhai. Influence of western North Pacific summer monsoon changes on typhoon genesis[J]. Acta Meteorologica Sinica, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009
|
[8] |
Liu K S, Chan J C L. Interdecadal variability of western North Pacific tropical cyclone tracks[J]. Journal of Climate, 2008, 21(17): 4464−4476. doi: 10.1175/2008JCLI2207.1
|
[9] |
赵海坤. 全球变暖背景下西北太平洋热带气旋活动变化机理研究[D]. 南京: 南京信息工程大学, 2012.
Zhao Haikun. Study on the mechanism of tropical cyclone activity change over the western North Pacific under the backgrourld of global warming[D]. Nanjing: Nanjing University of Information Science and Technology, 2012.
|
[10] |
Zhao Haikun, Wu Liguang, Zhou Weican. Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific[J]. Advances in Atmospheric Sciences, 2010, 27(6): 1361−1371. doi: 10.1007/s00376-010-9161-9
|
[11] |
Zhao Haikun, Wu Liguang, Wang Ruifang. Decadal variations of intense tropical cyclones over the western North Pacific during 1948−2010[J]. Advances in Atmospheric Sciences, 2014, 31(1): 57−65. doi: 10.1007/s00376-013-3011-5
|
[12] |
Zhou Xingyan, Lu Riyu, Chen Guanghua. Impact of interannual variation of synoptic disturbances on the tracks and landfalls of tropical cyclones over the western North Pacific[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1469−1477. doi: 10.1007/s00376-018-8055-0
|
[13] |
苏源, 吴立广. 多时间尺度环流对热带气旋海棠(0505)路径的影响[J]. 气象科学, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001
Su Yuan, Wu Liguang. Analysis of the multi-time scale circulation influences on the track of tropical cyclone Haitang (0505)[J]. Journal of the Meteorological Sciences, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001
|
[14] |
Clark J D, Chu P S. Interannual variation of tropical cyclone activity over the central North Pacific[J]. Journal of the Meteorological Society of Japan, 2002, 80(3): 403−418.
|
[15] |
何鹏程, 江静. PDO对西北太平洋热带气旋活动与大尺度环流关系的影响[J]. 气象科学, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004
He Pengcheng, Jiang Jing. Effect of PDO on the relationships between large scale circulation and tropical cyclone activity over the western North Pacific[J]. Journal of the Meteorological Sciences, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004
|
[16] |
Li Wenhong, Li Laifang, Deng Yi, et al. Impact of the interdecadal pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific[J]. Scientific Reports, 2015, 5: 12358. doi: 10.1038/srep12358
|
[17] |
Yu Cai, Han Xiang, Zhao Haikun, et al. Enhanced predictability of rapidly intensifying tropical cyclones over the western North Pacific associated with snow depth changes over the Tibetan Plateau[J]. Journal of Climate, 2022, 35(7): 2093−2110.
|
[18] |
Camargo S J, Sobel A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate, 2005, 18(15): 2996−3006. doi: 10.1175/JCLI3457.1
|
[19] |
Zhao Haikun, Wu Liguang, Zhou Weican. Interannual changes of tropical cyclone intensity in the western North Pacific[J]. Journal of the Meteorological Society of Japan, 2011, 89(3): 243−253.
|
[20] |
Zhao Haikun, Klotzbach P J, Chen Shaohua. Dominant influence of ENSO-like and global sea surface temperature patterns on changes in prevailing boreal summer tropical cyclone tracks over the western North Pacific[J]. Journal of Climate, 2020, 33(22): 9551−9565. doi: 10.1175/JCLI-D-19-0774.1
|
[21] |
Zhan Ruifen, Wang Yuqing, Lei Xiaotu. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency[J]. Journal of Climate, 2011, 24(2): 509−521. doi: 10.1175/2010JCLI3808.1
|
[22] |
Zhao Haikun, Wu Liguang. Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study[J]. Meteorology and Atmospheric Physics, 2014, 125(1/2): 89−101.
|
[23] |
Wang Chao, Wang Bin, Wu Liguang. A region-dependent seasonal forecasting framework for tropical cyclone genesis frequency in the western North Pacific[J]. Journal of Climate, 2019, 32(23): 8415−8435. doi: 10.1175/JCLI-D-19-0006.1
|
[24] |
Wang Chao, Wang Bin. Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects[J]. Climate Dynamics, 2019, 53(5/6): 2697−2714.
|
[25] |
Wang Bin, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Journal of Climate, 2002, 15(13): 1643−1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
|
[26] |
谢佩妍, 陶丽, 李俊徽, 等. 西北太平洋热带气旋在ENSO发展和衰减年的路径变化[J]. 大气科学, 2018, 42(5): 987−999.
Xie Peiyan, Tao Li, Li Junhui, et al. Variation of tropical cyclone track in the western North Pacific during ENSO developing and decaying years[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 987−999.
|
[27] |
Wang Bin, Wu Renguang, Fu X. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1517−1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
|
[28] |
Zhang Renhe, Min Qingye, Su Jingzhi. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: role of the anomalous western North Pacific anticyclone[J]. Science China Earth Sciences, 2017, 60(6): 1124−1132. doi: 10.1007/s11430-016-9026-x
|
[29] |
李慧敏, 徐海明, 李智玉. 厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响[J]. 气象学报, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042
Li Huimin, Xu Haiming, Li Zhiyu. Inter-annual variation of the western North Pacific anomalous anticyclone during El Niño years and its impact[J]. Acta Meteorologica Sinica, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042
|
[30] |
杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024
Du Xinguan, Yu Jinhua. Contribution of environmental factors to the change of tropical cyclone frequency in the summer of enso developing and decaying years[J]. Journal of Tropical Meteorology, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024
|
[31] |
Camargo S J, Robertson A W, Gaffney S J, et al. Cluster analysis of typhoon tracks. Part I: general properties[J]. Journal of Climate, 2007, 20(14): 3635−3653. doi: 10.1175/JCLI4188.1
|
[32] |
Zhao Haikun, Lu Ying, Jiang Xianan, et al. A statistical intra-seasonal prediction model of extended boreal summer western North Pacific tropical cyclone genesis[J]. Journal of Climate, 2022, 35(8): 2459−2478.
|
[33] |
Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
|
[34] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
[35] |
Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
|
[36] |
董克勤, 刘治军. 台风路径与各等压面上基本气流的关系[J]. 气象学报, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016
Dong Keqin, Liu Zhijun. The relationship between the typhoon track and the basic steering flow on each isobaric surface[J]. Acta Meteorol Sin, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016
|
[37] |
George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships[J]. Journal of Applied Meteorology, 1976, 15(12): 1252−1264. doi: 10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2
|
[38] |
Chan J C L, Gray W M. Tropical cyclone movement and surrounding flow relationships[J]. Monthly Weather Review, 1982, 110(10): 1354−1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
|
[39] |
Gray W M. Summary of ONR sponsored tropical cyclone motion and future plans[R]. Monterey: Naval Postgraduate School, 1982.
|
[40] |
North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
|
[41] |
Yu Jinhua, Zheng Yingqing, Wu Qishu, et al. K-means clustering for classification of the northwestern Pacific tropical cyclone tracks[J]. Journal of Tropical Meteorology, 2016, 22(2): 127−135.
|
[42] |
Wang Chunzai, Li Chunxiang, Mu Mu, et al. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dynamics, 2013, 40(11/12): 2887−2902.
|
[43] |
Roeckner E, Arpe K, Bengtsson L, et al. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate[R]. Hamburg: Max-Planck-Institut fuer Meteorologie, 1996: 90.
|
[44] |
Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906
|
[45] |
Li R C Y, Zhou Wen, Shun Chiming, et al. Change in destructiveness of landfalling tropical cyclones over China in recent decades[J]. Journal of Climate, 2017, 30(9): 3367−3379. doi: 10.1175/JCLI-D-16-0258.1
|