Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 4
Mar.  2023
Turn off MathJax
Article Contents
Lin Zhentao,Xie Lingling,Huang Runqi, et al. Seasonal variation of mesoscale eddies in the Andaman Sea[J]. Haiyang Xuebao,2023, 45(4):1–16 doi: 10.12284/hyxb2023035
Citation: Lin Zhentao,Xie Lingling,Huang Runqi, et al. Seasonal variation of mesoscale eddies in the Andaman Sea[J]. Haiyang Xuebao,2023, 45(4):1–16 doi: 10.12284/hyxb2023035

Seasonal variation of mesoscale eddies in the Andaman Sea

doi: 10.12284/hyxb2023035
  • Received Date: 2022-02-08
  • Rev Recd Date: 2022-08-03
  • Available Online: 2022-10-27
  • Publish Date: 2023-03-31
  • Using mesoscale eddy trajectory product from 1993 to 2019 provided by the AVISO, this study analyzes the climatology characteristics and seasonal variations of mesoscale eddies in the Andaman Sea (AS). The results show that a total of 328 mesoscale eddies were generated in the AS during the past 27 years, of which anticyclonic eddies (AEs) (171) were more than cyclonic eddies (CEs) (157). The eddies are mainly distributed in the deep waters of the central and western basin of the AS. The average life span of total eddies is 46.4 days, with average eddy radius of 111.8 km, average amplitude of 4.7 cm, rotating and propagating speeds of 24.8 cm/s and 15.0 cm/s, respectively. The AEs have large radius, amplitude, and rotating speed than CEs, but smaller propagating speed. During the eddy life, the composite radius, amplitude, and rotating speed of eddies all increase in the generation stage and then decrease in dissipation stage, while the eddy propagation speed has opposite trend. For the seasonal variation, the comparison of AEs to CEs shows seesaw phenomena in winter and summer, CEs are stronger and larger than AEs in summer, but weaker and smaller in winter. The distribution of AEs and CEs also shows seasonal polarity reversal, a ‘CEs-AEs-CEs’ pattern from north to south in summer, but a reversed ‘AEs-CEs-AEs’ pattern in winter. Dynamic analysis showed that the vorticity of background current may affect the alternating distribution pattern of mesoscale eddies in the AS, in which positive (negative) vorticity favors CEs (AEs). The energy analysis shows that wind forcing is dominant in the eddy kinetic energy (EKE) variation, and the seasonal wind work is coherent to the EKE variation in the AS.
  • loading
  • [1]
    林宏阳, 胡建宇, 郑全安. 南海及西北太平洋卫星高度计资料分析: 海洋中尺度涡统计特征[J]. 台湾海峡, 2012, 31(1): 105−113.

    Lin Hongyang, Hu Jianyu, Zheng Quanan. Satellite altimeter data analysis of the South China Sea and the Northwest Pacific Ocean: statistical features of oceanic mesoscale eddies[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(1): 105−113.
    [2]
    Richardson P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research: Oceans, 1983, 88(C7): 4355−4367.
    [3]
    修树孟, 郑全安, 孙湘平. 中尺度涡诱导的陆架上升流[J]. 水动力学研究与进展(A辑), 2002, 17(1): 61−68.

    Xiu Shumeng, Zheng Quanan, Sun Xiangping. Shelf upwelling induced by mesoscale eddy[J]. Journal of Hydrodynamics (Ser. A), 2002, 17(1): 61−68.
    [4]
    李敏, 谢玲玲, 杨庆轩, 等. 湾流区涡旋对海洋垂向混合的影响[J]. 中国科学: 地球科学, 2014, 44(4): 744−752.

    Li Min, Xie Lingling, Yang Qingxuan, et al. Impact of eddies on ocean diapycnal mixing in gulf stream region[J]. Science China Earth Sciences, 2014, 44(4): 744−752.
    [5]
    刘金. 南海北部跨陆架输运的变化及中尺度涡对叶绿素的影响[D]. 杭州: 浙江大学, 2019.

    Liu Jin. Variations of cross-shelf volume transports and mesoscale eddy effects on Chlorophyll in the northern South China Sea[D]. Hangzhou: Zhejiang University, 2019.
    [6]
    Farneti R, Delworth T L, Rosati A J, et al. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change[J]. Journal of Physical Oceanography, 2010, 40(7): 1539−1557. doi: 10.1175/2010JPO4353.1
    [7]
    Jian Yongjun, Zhang J, Liu Quansheng, et al. Effect of mesoscale eddies on underwater sound propagation[J]. Applied Acoustics, 2009, 70(3): 432−440. doi: 10.1016/j.apacoust.2008.05.007
    [8]
    汤博. 中尺度涡旋的统计特征及其温盐场的反演方法研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    Tang Bo. A study on the statistical characteristic of mesoscale eddies and the inversion method of their temperature and salinity fields[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2019.
    [9]
    Babu M T, Kumar P S, Rao D P. A subsurface cyclonic eddy in the Bay of Bengal[J]. Journal of Marine Research, 1991, 49(3): 403−410. doi: 10.1357/002224091784995846
    [10]
    Sanilkumar K V, Kuruvilla T V, Jogendranath D, et al. Observations of the Western Boundary Current of the Bay of Bengal from a hydrographic survey during March 1993[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44(1): 135−145. doi: 10.1016/S0967-0637(96)00036-2
    [11]
    郑全安, 张朝贤. 全球尺度海洋学研究对卫星遥感数据的需求[J]. 黄渤海海洋, 1989, 7(2): 53−58.

    Zheng Quanan, Zhang Chaoxian. Requirements of global scale oceanographic study for satellite remote sensing data[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1989, 7(2): 53−58.
    [12]
    郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [13]
    Chen Baiyang, Xie Lingling, Zheng Quanan, et al. Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data[J]. Acta Oceanologica Sinica, 2020, 39(12): 11−20. doi: 10.1007/s13131-020-1665-2
    [14]
    Chen Gengxin, Wang Dongxiao, Hou Yijun, et al. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012: 178−185.
    [15]
    Cui Wei, Yang Jungang, Ma Yi. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 16−27. doi: 10.1007/s13131-016-0945-3
    [16]
    常景龙, 邱云, 林新宇, 等. 孟加拉湾中尺度涡的总体特征与季节变化[J]. 应用海洋学学报, 2019, 38(2): 149−158. doi: 10.3969/J.ISSN.2095-4972.2019.02.001

    Chang Jinglong, Qiu Yun, Lin Xinyu, et al. General features and seasonal variation of mesoscale eddies in the Bay of Bengal[J]. Journal of Applied Oceanography, 2019, 38(2): 149−158. doi: 10.3969/J.ISSN.2095-4972.2019.02.001
    [17]
    黄挺, 周锋, 田娣, 等. 孟加拉湾及其毗邻海域中尺度涡旋活动的冬、夏季差异[J]. 海洋学研究, 2020, 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003

    Huang Ting, Zhou Feng, Tian Di, et al. Seasonal variations of mesoscale eddy in the Bay of Bengal and its adjacent regions[J]. Journal of Marine Sciences, 2020, 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003
    [18]
    周礼英. 基于遥感影像的安达曼海及其邻近海域内波分析[D]. 杭州: 浙江大学, 2018.

    Zhou Liying. Analysis of internal waves in the Andaman Sea and its adjacent waters based on remote sensing images[D]. Hangzhou: Zhejiang University, 2018.
    [19]
    Schlax M G, Chelton D B. The “growing method” of eddy identification and tracking in two and three dimensions[R]. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2016.
    [20]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Ocenas, 2011, 116(C6): C06018.
    [21]
    Cheng Y H, Ho C R, Zheng Quanan, et al. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry[J]. Remote Sensing, 2014, 6(6): 5164−5183. doi: 10.3390/rs6065164
    [22]
    Huang Runqi, Xie Lingling, Zheng Quanan, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91−102. doi: 10.1007/s13131-020-1678-x
    [23]
    Nof D. On the β-induced movement of isolated baroclinic eddies[J]. Journal of Physical Oceanography, 1981, 11: 1662−1672. doi: 10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2
    [24]
    Cushman-Roisin B, Tang Benyang, Chassignet E P. Westward motion of mesoscale eddies[J]. Journal of Physical Oceanography, 1990, 20(5): 758−768. doi: 10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2
    [25]
    Peng Lin, Chen Ge, Guan Lei, et al. Contrasting westward and eastward propagating mesoscale eddies in the global ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4504710.
    [26]
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
    [27]
    Shi Y, Yang D, Feng X, et al. One possible mechanism for eddy distribution in zonal current with meridional shear[J]. Scientific Reports, 2018, 8(1): 1−9.
    [28]
    Lin X, Qiu Y, Sun D. Thermohaline structures and heat/freshwater transports of mesoscale eddies in the Bay of Bengal observed by Argo and satellite data[J]. Remote Sensing, 2019, 11(24): 2989. doi: 10.3390/rs11242989
    [29]
    Zhang Z, Zhao W, Qiu B, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea[J]. Journal of Physical Oceanography, 2017, 47(6): 1243−1259. doi: 10.1175/JPO-D-16-0185.1
    [30]
    Chen G, Li Y, Xie Q, et al. Origins of eddy kinetic energy in the Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2097−2115. doi: 10.1002/2017JC013455
    [31]
    Cheng X, McCreary J P, Qiu B, et al. Intraseasonal-to-semiannual variability of sea-surface height in the eastern, equatorial Indian Ocean and southern Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4051−4067. doi: 10.1002/2016JC012662
    [32]
    Rao R R, Kumar M S G, Ravichandran M, et al. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(1): 1−13. doi: 10.1016/j.dsr.2009.10.008
    [33]
    Ubelmann C, Fu L. Cyclonic eddies formed at the Pacific tropical instability wave fronts[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12).
    [34]
    Xie L, Zheng Q, Zhang S, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [35]
    Tian F, Wu D, Yuan L, et al. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data[J]. International Journal of Remote Sensing, 2020, 41(8): 2835−2860. doi: 10.1080/01431161.2019.1694724
    [36]
    崔伟, 王伟, 马毅, 等. 基于1993—2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.

    Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the northwestern Pacific Ocean from 1993–2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28.
    [37]
    胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14.

    Hu D, Chen X, Mao K, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14.
    [38]
    Scharffenberg M G, Stammer D. Annual variations of geostrophic currents and eddy kinetic energy inferred from TOPEX/Poseidon and Jason-1 tandem mission data[C]. Orlando: European Organisation for the Exploitation of Meteorological Satellites. 2008: 3−7.
    [39]
    Qiu B, Chen S. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field[J]. Journal of Physical Oceanography, 2010, 40(1): 213−225. doi: 10.1175/2009JPO4285.1
    [40]
    He Y, Feng M, Xie J, et al. Spatiotemporal variations of mesoscale eddies in the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7867−7879. doi: 10.1002/2017JC013153
    [41]
    Hao Z, Xu Z, Feng M, et al. Spatiotemporal variability of mesoscale eddies in the Indonesian Seas[J]. Remote Sensing, 2021, 13(5): 1017. doi: 10.3390/rs13051017
    [42]
    Zhan P, Subramanian A C, Yao F, et al. Eddies in the Red Sea: A statistical and dynamical study[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3909−3925. doi: 10.1002/2013JC009563
    [43]
    Chen G, Han G. Contrasting short-lived with long-lived mesoscale eddies in the global ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3149−3167. doi: 10.1029/2019JC014983
    [44]
    Chelton D, Schlax M, Samelson R. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [45]
    Rai S, Hecht M, Maltrud M, et al. Scale of oceanic eddy killing by wind from global satellite observations[J]. Science Advances, 2021, 7(28): eabf4920. doi: 10.1126/sciadv.abf4920
    [46]
    Teng F, Dong C, Ji J, et al. Does the wind stress always damp an oceanic eddy?[J]. Geoscience Letters, 2021, 8(1): 1−6. doi: 10.1186/s40562-020-00170-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (574) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return