Citation: | Wang Feipeng,Yang Jingyu,Cai Zundong, et al. Bacterial community structure and assembly mechanisms in Sansha Bay, Fujian[J]. Haiyang Xuebao,2023, 45(3):84–96 doi: 10.12284/hyxb2023034 |
[1] |
中国海湾志编纂委员会. 中国海湾志(第七分册)[M]. 北京: 海洋出版社, 1994: 45-50.
China Gulf Chronicles Compilation Committee. China Bay Chronicle (Volume 7)[M]. Beijing: China Ocean Press, 1994: 45−50.
|
[2] |
王萱, 刘义峰, 郭伟. 近十年三沙湾海水增养殖区环境质量状况与变化趋势评价[J]. 渔业研究, 2019, 41(6): 519−525.
Wang Xuan, Liu Yifeng, Guo Wei. Evaluation of environmental quality and change trend in Sansha Bay mariculture area in recent ten years[J]. Journal of Fisheries Research, 2019, 41(6): 519−525.
|
[3] |
周进, 纪炜炜. 三都澳大型底栖动物次级生产力[J]. 海洋渔业, 2012, 34(1): 32−38. doi: 10.3969/j.issn.1004-2490.2012.01.005
Zhou Jin, Ji Weiwei. Secondary productivity of macrobenthos in Sandu Bay[J]. Marine Fisheries, 2012, 34(1): 32−38. doi: 10.3969/j.issn.1004-2490.2012.01.005
|
[4] |
黄伟强, 纪炜炜, 付婧, 等. 三沙湾大黄鱼网箱养殖衍生有机物的沉降特征[J]. 中国水产科学, 2020, 27(6): 709−719.
Huang Weiqiang, Ji Weiwei, Fu Jing, et al. Sedimentation characteristics of aquaculture-derived organic matter from a large yellow croaker (Larimichthys crocea) cage farm in Sansha Bay[J]. Journal of Fishery Sciences of China, 2020, 27(6): 709−719.
|
[5] |
Freimann R, Bürgmann H, Findlay S E, et al. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts[J]. The ISME Journal, 2013, 7(12): 2361−2373. doi: 10.1038/ismej.2013.114
|
[6] |
唐娅菲, 王金辉, 程宏, 等. 三沙湾春季浮游植物群落结构及其与环境因子的关系[J]. 上海海洋大学学报, 2018, 27(4): 522−530. doi: 10.12024/jsou.20170802123
Tang Yafei, Wang Jinhui, Cheng Hong, et al. Community structure of phytoplankton and its relationship with environmental factors of Sansha Bay in spring[J]. Journal of Shanghai Ocean University, 2018, 27(4): 522−530. doi: 10.12024/jsou.20170802123
|
[7] |
徐佳奕, 徐兆礼. 三沙湾浮游动物生态类群演替特征[J]. 生态学报, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050
Xu Jiayi, Xu Zhaoli. Seasonal succession of zooplankton in Sansha Bay, Fujian[J]. Acta Ecologica Sinica, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050
|
[8] |
Wang Feipeng, Huang Bangqin, Xie Yuyuan, et al. Diversity, composition, and activities of nano- and pico-eukaryotes in the northern South China Sea with influences of Kuroshio intrusion[J]. Frontiers in Marine Science, 2021, 8: 658233. doi: 10.3389/fmars.2021.658233
|
[9] |
Massana R, Gobet A, Audic S, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing[J]. Environmental Microbiology, 2015, 17(10): 4035−4049. doi: 10.1111/1462-2920.12955
|
[10] |
De Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the Sunlit ocean[J]. Science, 2015, 348(6237): 1261605. doi: 10.1126/science.1261605
|
[11] |
Not F, del Campo J, Balagué V, et al. New insights into the diversity of marine picoeukaryotes[J]. PLoS One, 2009, 4(9): e7143. doi: 10.1371/journal.pone.0007143
|
[12] |
Hu S K, Campbell V, Connell P, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific[J]. FEMS Microbiology Ecology, 2016, 92(4): fiw050.
|
[13] |
Wang Feipeng, Xie Yuyuan, Wu Wenxue, et al. Picoeukaryotic diversity and activity in the northwestern Pacific Ocean based on rDNA and rRNA high-throughput sequencing[J]. Frontiers in Microbiology, 2019, 9: 3259. doi: 10.3389/fmicb.2018.03259
|
[14] |
Xu Dapeng, Li Ran, Hu Chen, et al. Microbial eukaryote diversity and activity in the water column of the South China Sea based on DNA and RNA high throughput sequencing[J]. Frontiers in Microbiology, 2017, 8: 1121. doi: 10.3389/fmicb.2017.01121
|
[15] |
Wu Wenxue, Liu Hongbin. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea continuum during the wet and dry seasons[J]. Molecular Ecology, 2018, 27(22): 4627−4640. doi: 10.1111/mec.14867
|
[16] |
Blazewicz S J, Barnard R L, Daly R A, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses[J]. The ISME Journal, 2013, 7(11): 2061−2068. doi: 10.1038/ismej.2013.102
|
[17] |
国家环境保护总局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
State Environmental Protection Administration of China, Editorial Committee of Water and Wastewater Monitoring and Analysis Methods. Water and Wastewater Monitoring and Analysis Methods[M]. 4th Ed. Beijing: China Environmental Science Press, 2002.
|
[18] |
He Shuiqing, Li Dan, Wang Feipeng, et al. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 2022, 423: 127003.
|
[19] |
Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507
|
[20] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
|
[21] |
Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584. doi: 10.7717/peerj.2584
|
[22] |
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
|
[23] |
Wang Qiong, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261−5267. doi: 10.1128/AEM.00062-07
|
[24] |
Dixon P. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6): 927−930. doi: 10.1111/j.1654-1103.2003.tb02228.x
|
[25] |
Esposti M D. Bioenergetic evolution in proteobacteria and mitochondria[J]. Genome Biology and Evolution, 2014, 6(12): 3238−3251. doi: 10.1093/gbe/evu257
|
[26] |
Choi D H, Jang G II, Lapidus A, et al. Draft genome sequence of Marinobacterium rhizophilum CL-YJ9T (DSM 18822T), isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica[J]. Standards in Genomic Sciences, 2017, 12: 65. doi: 10.1186/s40793-017-0275-x
|
[27] |
Liu Shuting, Wawrik B, Liu Zhanfei. Different bacterial communities involved in peptide decomposition between Normoxic and hypoxic coastal waters[J]. Frontiers in Microbiology, 2017, 8: 353.
|
[28] |
Barbeau K, Zhang Guangping, Live D H, et al. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus[J]. Journal of the American Chemical Society, 2002, 124(3): 378−379. doi: 10.1021/ja0119088
|
[29] |
DIéguez A L, Romalde J L. Draft genome sequences of Neptuniibacter sp. strains LFT 1.8 and ATR 1.1[J]. Genome Announcements, 2017, 5(5): e01541−16.
|
[30] |
Tremblay J, Yergeau E, Fortin N, et al. Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria[J]. The ISME Journal, 2017, 11(12): 2793−2808. doi: 10.1038/ismej.2017.129
|
[31] |
Zheng Li, Cui Zhisong, Xu Luyan, et al. Draft genome sequence of Rhodobacteraceae strain PD-2, an algicidal bacterium with a quorum-sensing system, isolated from the marine microalga Prorocentrum donghaiense[J]. Genome Announcements, 2015, 3(1): e01549−14.
|
[32] |
Zhang Mengyu, Pan Luqing, Huang Fei, et al. Metagenomic analysis of composition, function and cycling processes of microbial community in water, sediment and effluent of Litopenaeus vannamei farming environments under different culture modes[J]. Aquaculture, 2019, 506: 280−293. doi: 10.1016/j.aquaculture.2019.03.038
|
[33] |
Flombaum P, Gallegos J L, Gordillo R A, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9824−9829. doi: 10.1073/pnas.1307701110
|
[34] |
Barbeyron T, Thomas F, Barbe V, et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT[J]. Environmental Microbiology, 2016, 18(12): 4610−4627. doi: 10.1111/1462-2920.13584
|
[35] |
王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性、代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007−2017. doi: 10.13227/j.hjkx.202107135
Wang Feipeng, Huang Yaling, Zhang Ruirui, et al. Effects of different aeration treatments on bacterial diversity, metabolic activity, and function in constructed wetlands[J]. Environmental Science, 2022, 43(4): 2007−2017. doi: 10.13227/j.hjkx.202107135
|
[36] |
Xu Zhimeng, Cheung S, Endo H, et al. Disentangling the ecological processes shaping the latitudinal pattern of phytoplankton communities in the Pacific Ocean[J]. mSystems, 2022, 7(1): e0120321. doi: 10.1128/msystems.01203-21
|
[37] |
Kong Jie, Wang Lei, Lin Cai, et al. Contrasting community assembly mechanisms underlie similar biogeographic patterns of surface microbiota in the tropical north Pacific Ocean[J]. Microbiology Spectrum, 2022, 10(1): e0079821. doi: 10.1128/spectrum.00798-21
|
[38] |
Vellend M. The Theory of Ecological Communities (MPB-57)[M]. Princeton: Princeton University Press, 2016.
|
[39] |
Chave J. Neutral theory and community ecology[J]. Ecology Letters, 2004, 7(3): 241−253. doi: 10.1111/j.1461-0248.2003.00566.x
|
[40] |
Chen Weidong, Ren Kexin, Isabwe A, et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1): 138. doi: 10.1186/s40168-019-0749-8
|
[41] |
Burns A R, Stephens W Z, Stagaman K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development[J]. The ISME Journal, 2016, 10(3): 655−664. doi: 10.1038/ismej.2015.142
|