Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Zhang Zhen,Zhang Gong,Liu Changwei, et al. Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data[J]. Haiyang Xuebao,2023, 45(2):51–61 doi: 10.12284/hyxb2023029
Citation: Zhang Zhen,Zhang Gong,Liu Changwei, et al. Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data[J]. Haiyang Xuebao,2023, 45(2):51–61 doi: 10.12284/hyxb2023029

Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data

doi: 10.12284/hyxb2023029
  • Received Date: 2022-01-05
  • Rev Recd Date: 2022-05-23
  • Available Online: 2023-02-13
  • Publish Date: 2023-02-01
  • The short wave radiation budget on the sea surface is an important physical process of energy exchange at the sea-air interface. In this study, the sea surface short wave radiation flux budget of ERA5 reanalysis data is evaluated by using the observed data of summer scientific research voyages in the northern South China Sea in 2019. The results show that the downward short wave radiation of ERA5 is smaller than the observed data, and the deviation is the largest at 11:00 and 15:00 (Beijing time), up to −100 W/m2. At the same time, the sea surface albedo of ERA5 is generally lower than observed. The bias in ERA5 is small under a high solar altitude angle, being about −0.03, but can reach −0.15 under a low solar altitude. The bias in the downward shortwave radiation and sea surface albedo jointly caused an underestimation of 25.4 W/m2 in the daytime average sea surface net shortwave radiation flux in ERA5. In particular, the albedo underestimation offsets about 50% of the contribution of downward shortwave radiation bias. The results show that ERA5 has different manifestations of sea surface radiation budget deviation under different atmospheric transmittance conditions. We also found that the underestimation of sea surface albedo in ERA5 is caused by its parameterization schemes and put an optimization based on our observation.
  • loading
  • [1]
    Groeskamp S, Iudicone D. The effect of air-sea flux products, shortwave radiation depth penetration, and albedo on the upper ocean overturning circulation[J]. Geophysical Research Letters, 2018, 45(17): 9087−9097. doi: 10.1029/2018GL078442
    [2]
    Zhang Yan, Wang Dongxiao, Xia Huayong, et al. The seasonal variability of an air-sea heat flux in the northern South China Sea[J]. Acta Oceanologica Sinica, 2012, 31(5): 79−86. doi: 10.1007/s13131-012-0238-4
    [3]
    王举, 姚华栋, 蒋国荣, 等. 南海北部海区太阳辐射观测分析与计算方法研究[J]. 海洋与湖沼, 2005, 36(5): 385−393.

    Wang Ju, Yao Huadong, Jiang Guorong, et al. Analyses and calculation of solar radiation over northern South China Sea[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 385−393.
    [4]
    Hawcroft M, Haywood J M, Collins M, et al. Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model[J]. Climate Dynamics, 2017, 48(7/8): 2279−2295.
    [5]
    Sweeney C, Gnanadesikan A, Griffies S M, et al. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport[J]. Journal of Physical Oceanography, 2005, 35(6): 1103−1119. doi: 10.1175/JPO2740.1
    [6]
    Gabriel C J, Robock A, Xia Lili, et al. The G4Foam Experiment: global climate impacts of regional ocean albedo modification[J]. Atmospheric Chemistry and Physics, 2017, 17(1): 595−613. doi: 10.5194/acp-17-595-2017
    [7]
    Liang Shunlin. Comprehensive Remote Sensing[M]. Amsterdam: Elsevier, 2018.
    [8]
    Gupta S K, Ritchey N A, Wilber A C, et al. A climatology of surface radiation budget derived from satellite data[J]. Journal of Climate, 1999, 12(8): 2691−2710. doi: 10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2
    [9]
    Payne R E. Albedo of the sea surface[J]. Journal of the Atmospheric Sciences, 1972, 29(5): 959−970. doi: 10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2
    [10]
    Taylor J P, Edwards J M, Glew M D, et al. Studies with a flexible new radiation code. II: comparisons with aircraft short-wave observations[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(532): 839−861. doi: 10.1002/qj.49712253204
    [11]
    Katsaros K B, McMurdie L A, Lind R J, et al. Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed[J]. Journal of Geophysical Research: Oceans, 1985, 90(C4): 7313−7321. doi: 10.1029/JC090iC04p07313
    [12]
    Jin Zhonghai, Charlock T P, Smith W L Jr, et al. A parameterization of ocean surface albedo[J]. Geophysical Research Letters, 2004, 31(22): L22301.
    [13]
    Zhou Fenghua, Zhang Rongwang, Shi Rui, et al. Processing of turbulent data and flux quality control of observed data from Yongxing Island in Spring 2016[J]. Journal of Coastal Research, 2018, 84: 114−124. doi: 10.2112/SI84-017.1
    [14]
    Decker M, Brunke M A, Wang Zhuo, et al. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J]. Journal of Climate, 2012, 25(6): 1916−1944. doi: 10.1175/JCLI-D-11-00004.1
    [15]
    Govaerts Y M, Lattanzio A. Retrieval error estimation of surface albedo derived from geostationary large band satellite observations: application to Meteosat-2 and Meteosat-7 data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D5): D05102.
    [16]
    Key J R, Schweiger A J, Stone R S. Expected uncertainty in satellite-derived estimates of the surface radiation budget at high latitudes[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15837−15847. doi: 10.1029/97JC00478
    [17]
    Huang Jingting, Arnott W P, Barnard J C, et al. Theoretical uncertainty analysis of satellite retrieved aerosol optical depth associated with surface albedo and aerosol optical properties[J]. Remote Sensing, 2021, 13(3): 344. doi: 10.3390/rs13030344
    [18]
    Smith S R, Alory G, Andersson A, et al. Ship-based contributions to global ocean, weather, and climate observing systems[J]. Frontiers in Marine Science, 2019, 6: 1−26. doi: 10.3389/fmars.2019.00434
    [19]
    Li J, Scinocca J, Lazare M, et al. Ocean surface albedo and its impact on radiation balance in climate models[J]. Journal of Climate, 2006, 19(24): 6314−6333. doi: 10.1175/JCLI3973.1
    [20]
    Enomoto T. Ocean surface albedo in AFES[J]. JAMSTEC Report of Research and Development, 2007, 6: 21−30. doi: 10.5918/jamstecr.6.21
    [21]
    张一夫. 关于海面反照率的初步探讨[J]. 海洋学报, 1990, 12(1): 24−30.

    Zhang Yifu. A preliminary discussion on sea surface albedo[J]. Haiyang Xuebao, 1990, 12(1): 24−30.
    [22]
    Bengtsson L, Hagemann S, Hodges K I. Can climate trends be calculated from reanalysis data?[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D11): D11111. doi: 10.1029/2004JD004536
    [23]
    Fujiwara M, Wright J S, Manney G L, et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems[J]. Atmospheric Chemistry and Physics, 2017, 17(2): 1417−1452. doi: 10.5194/acp-17-1417-2017
    [24]
    Trenberth K E, Koike T, Onogi K. Progress and prospects for reanalysis for weather and climate[J]. Eos, Transactions American Geophysical Union, 2008, 89(26): 234−235. doi: 10.1029/2008EO260002
    [25]
    Parker W S. Reanalyses and observations: what’s the difference?[J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1565−1572. doi: 10.1175/BAMS-D-14-00226.1
    [26]
    Cao Yunfeng, Liang Shunlin, He Tao, et al. Evaluation of four reanalysis surface albedo data sets in arctic using a satellite product[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 384−388.
    [27]
    Trenberth K E, Fasullo J T. Simulation of present-day and twenty-first-century energy budgets of the southern oceans[J]. Journal of Climate, 2010, 23(2): 440−454. doi: 10.1175/2009JCLI3152.1
    [28]
    Hogikyan A, Cronin M F, Zhang Dongxiao, et al. Uncertainty in net surface heat flux due to differences in commonly used albedo products[J]. Journal of Climate, 2020, 33(1): 303−315. doi: 10.1175/JCLI-D-18-0448.1
    [29]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [30]
    ECMWF. IFS documentation CY41R2-Part IV: physical processes[EB/OL]. (2016–03–08)[2022–01–04]. https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes.
    [31]
    Urraca R, Huld T, Gracia-Amillo A, et al. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data[J]. Solar Energy, 2018, 164: 339−354. doi: 10.1016/j.solener.2018.02.059
    [32]
    Janjić T, Bormann N, Bocquet M, et al. On the representation error in data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(713): 1257−1278. doi: 10.1002/qj.3130
    [33]
    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838−850. doi: 10.1364/JOSA.44.000838
    [34]
    Feng Youbin, Liu Qiang, Qu Ying, et al. Estimation of the ocean water albedo from remote sensing and meteorological reanalysis data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 850−868. doi: 10.1109/TGRS.2015.2468054
    [35]
    曹畅, 李旭辉, 张弥, 等. 太湖湖表反照率时空特征及影响因子[J]. 环境科学, 2015, 36(10): 3611−3619.

    Cao Chang, Li Xuhui, Zhang Mi, et al. Temporal and spatial characteristics of Lake Taihu surface albedo and its impact factors[J]. Environmental Science, 2015, 36(10): 3611−3619.
    [36]
    王丹, 盛立芳. 东海海面辐射特征及影响因子分析[J]. 中国海洋大学学报(自然科学版), 2010, 40(12): 8−16.

    Wang Dan, Sheng Lifang. Analysis of characteristics of sea-surface radiation and its impact factors in East China Sea[J]. Periodical of Ocean University of China, 2010, 40(12): 8−16.
    [37]
    Huang Chuanjiang, Qiao Fangli, Chen Siyu, et al. Observation and parameterization of broadband sea surface albedo[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4480−4491. doi: 10.1029/2018JC014444
    [38]
    Sinnett G, Feddersen F. Observations and parameterizations of surfzone albedo[J]. Methods in Oceanography, 2016, 17: 319−334. doi: 10.1016/j.mio.2016.07.001
    [39]
    Briegleb B P, Minnis P, Ramanathan V, et al. Comparison of regional clear-sky albedos inferred from satellite observations and model computations[J]. Journal of Applied Meteorology and Climatology, 1986, 25(2): 214−226. doi: 10.1175/1520-0450(1986)025<0214:CORCSA>2.0.CO;2
    [40]
    Hansen J, Russell G, Rind D, et al. Efficient three-dimensional global models for climate studies: models I and II[J]. Monthly Weather Review, 1983, 111(4): 609−662. doi: 10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2
    [41]
    Sinnett G, Feddersen F. The nearshore heat budget: effects of stratification and surfzone dynamics[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 8219−8240. doi: 10.1029/2019JC015494
    [42]
    Séférian R, Baek S, Boucher O, et al. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)[J]. Geoscientific Model Development, 2018, 11(1): 321−338. doi: 10.5194/gmd-11-321-2018
    [43]
    Preisendorfer R W, Mobley C D. Albedos and glitter patterns of a wind-roughened sea surface[J]. Journal of Physical Oceanography, 1986, 16(7): 1293−1316. doi: 10.1175/1520-0485(1986)016<1293:AAGPOA>2.0.CO;2
    [44]
    Jin Zhonghai, Qiao Yanli, Wang Yingjian, et al. A new parameterization of spectral and broadband ocean surface albedo[J]. Optics Express, 2011, 19(27): 26429−26443. doi: 10.1364/OE.19.026429
    [45]
    崔生成, 朱文越, 李学彬, 等. 0.4~14 μm中国海域海表反照率时空分布特性[J]. 红外与激光工程, 2018, 47(12): 1212001. doi: 10.3788/IRLA201847.1212001

    Cui Shengcheng, Zhu Wenyue, Li Xuebin, et al. Spatiotemporal distributions of 0.4−14 μm ocean surface albedo over China Sea areas[J]. Infrared and Laser Engineering, 2018, 47(12): 1212001. doi: 10.3788/IRLA201847.1212001
    [46]
    杨倩, 贺明霞. 风生海中气泡对海洋光学反射比的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(1/2): 153−156.

    Yang Qian, He Mingxia. Effects of wind-generated bubbles on ocean reflectance[J]. Periodical of Ocean University of China, 2012, 42(1/2): 153−156.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (601) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return