Citation: | Lai Xiaoqian,Yu Yiqi,Liang Zhongyao, et al. Water temperature prediction in the Sansha Bay based on the integration of differential regression model and transportable long short-term memory network[J]. Haiyang Xuebao,2023, 45(4):165–178 doi: 10.12284/hyxb2023027 |
[1] |
田梓杨, 黄洪辉, 齐占会, 等. 大鹏澳海湾养殖生态环境的化学计量分析[J]. 中国水产科学, 2012, 19(5): 881−888.
Tian Ziyang, Huang Honghui, Qi Zhanhui, et al. Using chemometric methods to study the mariculture eco-environment in Dapeng Cove, China[J]. Journal of Fishery Sciences of China, 2012, 19(5): 881−888.
|
[2] |
程建新, 肖佳媚, 陈明茹, 等. 兴化湾海湾生态系统退化评价[J]. 厦门大学学报(自然科学版), 2012, 51(5): 944−950.
Cheng Jianxin, Xiao Jiamei, Chen Mingru, et al. Ecosystem degradation assessment of Xinghua Bay[J]. Journal of Xiamen University (Natural Science), 2012, 51(5): 944−950.
|
[3] |
Rabalais N N. Human impacts on fisheries across the land-sea interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(26): 7892−7893. doi: 10.1073/pnas.1508766112
|
[4] |
肖应凯, 刘卫国, 马云麒, 等. 鹿角珊瑚δ18O, Sr/Ca和Mg/Ca比值与海水表面温度的相关性研究——不同海水温度下的珊瑚养殖实验[J]. 中国科学: 地球科学, 2014, 57(5): 1048−1060. doi: 10.1007/s11430-013-4710-6
Xiao Yingkai, Liu Weiguo, Ma Yunqi, et al. Correlation between δ18O, Sr/Ca and Mg/Ca of coral Acropora and seawater temperature from coral culture experiments[J]. Science China Earth Sciences, 2014, 57(5): 1048−1060. doi: 10.1007/s11430-013-4710-6
|
[5] |
胡石建, 李诗翰. 海洋热浪研究进展与展望[J]. 地球科学进展, 2022, 37(1): 51−64.
Hu Shijian, Li Shihan. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 2022, 37(1): 51−64.
|
[6] |
Biswas B K, Svirezhev Y M, Bala B K. A model to predict climate-change impact on fish catch in the world oceans[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35(6): 773−783. doi: 10.1109/TSMCA.2005.851345
|
[7] |
Gianelli I, Ortega L, Marín Y, et al. Evidence of ocean warming in Uruguay's fisheries landings: the mean temperature of the catch approach[J]. Marine Ecology Progress Series, 2019, 625: 115−125. doi: 10.3354/meps13035
|
[8] |
Wang Wenyu, Zhou Chenghu, Shao Quanqin, et al. Remote sensing of sea surface temperature and chlorophyll-a: implications for squid fisheries in the north-west Pacific Ocean[J]. International Journal of Remote Sensing, 2010, 31(17/18): 4515−4530.
|
[9] |
Wheeland L J, Morgan M J. Age-specific shifts in Greenland halibut (Reinhardtius hippoglossoides) distribution in response to changing ocean climate[J]. ICES Journal of Marine Science, 2020, 77(1): 230−240.
|
[10] |
Zisserson B, Cook A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean[J]. Fisheries Research, 2017, 195: 12−18. doi: 10.1016/j.fishres.2017.06.009
|
[11] |
卢峰本, 黄滢, 周启强, 等. 海水养殖的气象风险分析及预报[J]. 气象, 2006, 32(11): 113−117. doi: 10.7519/j.issn.1000-0526.2006.11.018
Lu Fengben, Huang Ying, Zhou Qiqiang, et al. Meteorological risk analysis and forecast to mariculture production[J]. Meteorological Monthly, 2006, 32(11): 113−117. doi: 10.7519/j.issn.1000-0526.2006.11.018
|
[12] |
Xie Jiang, Zhang Jiyuan, Yu Jie, et al. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 740−744. doi: 10.1109/LGRS.2019.2931728
|
[13] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
[14] |
刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11): 2753−2768.
Liu Jianwei, Song Zhiyan. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11): 2753−2768.
|
[15] |
Zhang Qin, Wang Hui, Dong Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745−1749. doi: 10.1109/LGRS.2017.2733548
|
[16] |
Hou Siyun, Li Wen’gen, Liu Tianying, et al. D2CL: a dense dilated convolutional LSTM model for sea surface temperature prediction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12514−12523. doi: 10.1109/JSTARS.2021.3128577
|
[17] |
Yang Yuting, Dong Junyu, Sun Xin, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 207−211. doi: 10.1109/LGRS.2017.2780843
|
[18] |
张昆. 基于深度学习的深海遥感技术研究[D]. 厦门: 厦门大学, 2019.
Zhang Kun. Research on deep-ocean remote sensing by deep learning[D]. Xiamen: Xiamen University, 2019.
|
[19] |
Kim M, Yang H, Kim J. Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model[J]. Remote Sensing, 2020, 12(21): 3654. doi: 10.3390/rs12213654
|
[20] |
李嘉康, 李其杰, 赵颖, 等. 基于CEEMD-BP神经网络的海温异常预测研究[J]. 数学的实践与认识, 2017, 47(24): 163−171.
Li Jiakang, Li Qijie, Zhao Ying, et al. Sea surface temperature anomaly forecast research based on CEEMD-BP neural network[J]. Mathematics in Practice and Theory, 2017, 47(24): 163−171.
|
[21] |
董璐, 周天军. 20世纪太平洋海温变化中人为因子与自然因子贡献的模拟研究[J]. 海洋学报, 2014, 36(3): 48−60.
Dong Lu, Zhou Tianjun. Contributions of natural and anthropogenic forcings to the twentieth-century Pacific sea surface temperature variability simulated by a climate system model[J]. Haiyang Xuebao, 2014, 36(3): 48−60.
|
[22] |
田远洋, 徐显涛, 彭安帮, 等. 训练数据量对LSTM网络学习性能影响分析[J]. 水文, 2022, 42(1): 29−34, 22.
Tian Yuanyang, Xu Xiantao, Peng Anbang, et al. Effects of training data on the study performance of LSTM network[J]. Journal of China Hydrology, 2022, 42(1): 29−34, 22.
|
[23] |
Zhuang Fuzhen, Qi Zhiyuan, Duan Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43−76. doi: 10.1109/JPROC.2020.3004555
|
[24] |
黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展[J]. 中国图象图形学报, 2022, 27(3): 672−686. doi: 10.11834/jig.210814
Li Ying, Song Peihua. Review of transfer learning in medical image classification[J]. Journal of Image and Graphics, 2022, 27(3): 672−686. doi: 10.11834/jig.210814
|
[25] |
张晓, 李业刚, 王栋, 等. 基于迁移学习的社交评论命名实体识别[J]. 计算机应用与软件, 2022, 39(1): 143−150.
Zhang Xiao, Li Yegang, Wang Dong, et al. Social comment named entity recognition based on transfer learning[J]. Computer Applications and Software, 2022, 39(1): 143−150.
|
[26] |
王义刚, 宋志尧, 姜翠玲, 等. 福建省海湾数模与环境研究: 三沙湾[M]. 北京: 海洋出版社, 2009.
Wang Yigang, Song Zhiyao, Jiang Cuiling, et al. Numerical Modeling and Environmental Study of Gulf in Fujian Province: Sansha Bay[M]. Beijing: China Ocean Press, 2009.
|
[27] |
厦门市地方志编纂委员会. 厦门市志[M]. 北京: 方志出版社, 2004.
Xiamen Local Chronicle Compilation Committee. County Annals of Xiamen[M]. Beijing: Local Records Publishing House, 2004.
|
[28] |
欧阳俊峰. 福建沿海滩涂微型真核生物群落结构及对生物修复的响应[D]. 厦门: 集美大学, 2016.
Ouyang Junfeng. Microeukaryotic community structure and response to bioremediation in intertidal mudflats of Fujian coast[D]. Xiamen: Jimei University, 2016.
|
[29] |
王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8.
Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8.
|
[30] |
Yu Yong, Si Xiaosheng, Hu Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235−1270. doi: 10.1162/neco_a_01199
|
[31] |
Pan S J, Yang Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345−1359. doi: 10.1109/TKDE.2009.191
|
[32] |
福建省科学技术厅. 大黄鱼养殖[M]. 北京: 海洋出版社, 2004.
Province Department of Science and Technology of Fujian. Breeding and farming of Pseudosciaena Crocea[M]. Beijing: China Ocean Press, 2004.
|
[33] |
Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014.
|
[34] |
刘明, 王红蕾, 索良泽. 基于变权组合模型的中长期负荷概率密度预测[J]. 电力系统及其自动化学报, 2019, 31(7): 88−94. doi: 10.3969/j.issn.1003-8930.2019.07.014
Liu Ming, Wang Honglei, Suo Liangze. Medium- and long-term load probability density forecasting based on variable weight combination model[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 88−94. doi: 10.3969/j.issn.1003-8930.2019.07.014
|
[35] |
康俊锋, 谭建林, 方雷, 等. XGBoost-LSTM变权组合模型支持下短期PM2.5浓度预测—以上海为例[J]. 中国环境科学, 2021, 41(9): 4016−4025.
Kang Junfeng, Tan Jianlin, Fang Lei, et al. Short-term PM2.5 concentration prediction based on XGBoost and LSTM variable weight combination model: a case study of Shanghai[J]. China Environmental Science, 2021, 41(9): 4016−4025.
|
[36] |
Benthuysen J A, Oliver E C J, Feng Ming, et al. Extreme marine warming across tropical Australia during austral summer 2015−2016[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1301−1326. doi: 10.1002/2017JC013326
|
[37] |
齐庆华, 蔡榕硕. 中国近海海表温度变化的极端特性及其气候特征研究[J]. 海洋学报, 2019, 41(7): 36−51.
Qi Qinghua, Cai Rongshuo. Analysis on climate characteristics of sea surface temperature extremes in coastal China seas[J]. Haiyang Xuebao, 2019, 41(7): 36−51.
|