Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 4
Mar.  2023
Turn off MathJax
Article Contents
Lai Xiaoqian,Yu Yiqi,Liang Zhongyao, et al. Water temperature prediction in the Sansha Bay based on the integration of differential regression model and transportable long short-term memory network[J]. Haiyang Xuebao,2023, 45(4):165–178 doi: 10.12284/hyxb2023027
Citation: Lai Xiaoqian,Yu Yiqi,Liang Zhongyao, et al. Water temperature prediction in the Sansha Bay based on the integration of differential regression model and transportable long short-term memory network[J]. Haiyang Xuebao,2023, 45(4):165–178 doi: 10.12284/hyxb2023027

Water temperature prediction in the Sansha Bay based on the integration of differential regression model and transportable long short-term memory network

doi: 10.12284/hyxb2023027
  • Received Date: 2022-07-06
  • Rev Recd Date: 2022-09-26
  • Available Online: 2023-04-10
  • Publish Date: 2023-03-31
  • Water temperature prediction is a key technology to ensure the production of coastal fisheries and environmental safety. The existing numerical models have high development costs with insufficient business applications. This study develops a prediction method of water temperature through integrating differential regression (DR) and transferable long short-term memory (TLSTM). Taking the water temperature of Xiamen Bay (source domain, with a large number of data) and Sansha Bay (target domain, with less data) as the research object, the DR model is established based on the data of monitoring water temperature and forecast temperature in the Sansha Bay, and the TLSTM model is established based on the long-term monitoring data of water temperature in the Xiamen Bay. The pure differential regression model, mixed differential regression model and TLSTM model are integrated into the DR-TLSTM model of Sansha Bay by using variable weight algorithm, and the performance of the model is evaluated, the results are compared with the LSTM model based on only a small amount of monitoring data in the Sansha Bay. The results show that: (1) the prediction accuracy of TLSTM model is better than that of LSTM model based on a small amount of data in the target domain; (2) the DR-TLSTM model has high prediction accuracy, and the root mean square error of prediction in the next 1−7 days is 0.13−0.77℃, and the root mean square error of prediction in the next 1−3 days is less than 0.4℃; (3) the DR-TLSTM model can effectively predict the sudden rise or fall trend of water temperature, and the root mean square error of predicting the sudden change point of water temperature is 0.29−1.09℃. Based on the DR-TLSTM model, the operational information service of water temperature early warning and forecast in the Sansha Bay is realized.
  • loading
  • [1]
    田梓杨, 黄洪辉, 齐占会, 等. 大鹏澳海湾养殖生态环境的化学计量分析[J]. 中国水产科学, 2012, 19(5): 881−888.

    Tian Ziyang, Huang Honghui, Qi Zhanhui, et al. Using chemometric methods to study the mariculture eco-environment in Dapeng Cove, China[J]. Journal of Fishery Sciences of China, 2012, 19(5): 881−888.
    [2]
    程建新, 肖佳媚, 陈明茹, 等. 兴化湾海湾生态系统退化评价[J]. 厦门大学学报(自然科学版), 2012, 51(5): 944−950.

    Cheng Jianxin, Xiao Jiamei, Chen Mingru, et al. Ecosystem degradation assessment of Xinghua Bay[J]. Journal of Xiamen University (Natural Science), 2012, 51(5): 944−950.
    [3]
    Rabalais N N. Human impacts on fisheries across the land-sea interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(26): 7892−7893. doi: 10.1073/pnas.1508766112
    [4]
    肖应凯, 刘卫国, 马云麒, 等. 鹿角珊瑚δ18O, Sr/Ca和Mg/Ca比值与海水表面温度的相关性研究——不同海水温度下的珊瑚养殖实验[J]. 中国科学: 地球科学, 2014, 57(5): 1048−1060. doi: 10.1007/s11430-013-4710-6

    Xiao Yingkai, Liu Weiguo, Ma Yunqi, et al. Correlation between δ18O, Sr/Ca and Mg/Ca of coral Acropora and seawater temperature from coral culture experiments[J]. Science China Earth Sciences, 2014, 57(5): 1048−1060. doi: 10.1007/s11430-013-4710-6
    [5]
    胡石建, 李诗翰. 海洋热浪研究进展与展望[J]. 地球科学进展, 2022, 37(1): 51−64.

    Hu Shijian, Li Shihan. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 2022, 37(1): 51−64.
    [6]
    Biswas B K, Svirezhev Y M, Bala B K. A model to predict climate-change impact on fish catch in the world oceans[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35(6): 773−783. doi: 10.1109/TSMCA.2005.851345
    [7]
    Gianelli I, Ortega L, Marín Y, et al. Evidence of ocean warming in Uruguay's fisheries landings: the mean temperature of the catch approach[J]. Marine Ecology Progress Series, 2019, 625: 115−125. doi: 10.3354/meps13035
    [8]
    Wang Wenyu, Zhou Chenghu, Shao Quanqin, et al. Remote sensing of sea surface temperature and chlorophyll-a: implications for squid fisheries in the north-west Pacific Ocean[J]. International Journal of Remote Sensing, 2010, 31(17/18): 4515−4530.
    [9]
    Wheeland L J, Morgan M J. Age-specific shifts in Greenland halibut (Reinhardtius hippoglossoides) distribution in response to changing ocean climate[J]. ICES Journal of Marine Science, 2020, 77(1): 230−240.
    [10]
    Zisserson B, Cook A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean[J]. Fisheries Research, 2017, 195: 12−18. doi: 10.1016/j.fishres.2017.06.009
    [11]
    卢峰本, 黄滢, 周启强, 等. 海水养殖的气象风险分析及预报[J]. 气象, 2006, 32(11): 113−117. doi: 10.7519/j.issn.1000-0526.2006.11.018

    Lu Fengben, Huang Ying, Zhou Qiqiang, et al. Meteorological risk analysis and forecast to mariculture production[J]. Meteorological Monthly, 2006, 32(11): 113−117. doi: 10.7519/j.issn.1000-0526.2006.11.018
    [12]
    Xie Jiang, Zhang Jiyuan, Yu Jie, et al. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 740−744. doi: 10.1109/LGRS.2019.2931728
    [13]
    Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
    [14]
    刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11): 2753−2768.

    Liu Jianwei, Song Zhiyan. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11): 2753−2768.
    [15]
    Zhang Qin, Wang Hui, Dong Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745−1749. doi: 10.1109/LGRS.2017.2733548
    [16]
    Hou Siyun, Li Wen’gen, Liu Tianying, et al. D2CL: a dense dilated convolutional LSTM model for sea surface temperature prediction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12514−12523. doi: 10.1109/JSTARS.2021.3128577
    [17]
    Yang Yuting, Dong Junyu, Sun Xin, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 207−211. doi: 10.1109/LGRS.2017.2780843
    [18]
    张昆. 基于深度学习的深海遥感技术研究[D]. 厦门: 厦门大学, 2019.

    Zhang Kun. Research on deep-ocean remote sensing by deep learning[D]. Xiamen: Xiamen University, 2019.
    [19]
    Kim M, Yang H, Kim J. Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model[J]. Remote Sensing, 2020, 12(21): 3654. doi: 10.3390/rs12213654
    [20]
    李嘉康, 李其杰, 赵颖, 等. 基于CEEMD-BP神经网络的海温异常预测研究[J]. 数学的实践与认识, 2017, 47(24): 163−171.

    Li Jiakang, Li Qijie, Zhao Ying, et al. Sea surface temperature anomaly forecast research based on CEEMD-BP neural network[J]. Mathematics in Practice and Theory, 2017, 47(24): 163−171.
    [21]
    董璐, 周天军. 20世纪太平洋海温变化中人为因子与自然因子贡献的模拟研究[J]. 海洋学报, 2014, 36(3): 48−60.

    Dong Lu, Zhou Tianjun. Contributions of natural and anthropogenic forcings to the twentieth-century Pacific sea surface temperature variability simulated by a climate system model[J]. Haiyang Xuebao, 2014, 36(3): 48−60.
    [22]
    田远洋, 徐显涛, 彭安帮, 等. 训练数据量对LSTM网络学习性能影响分析[J]. 水文, 2022, 42(1): 29−34, 22.

    Tian Yuanyang, Xu Xiantao, Peng Anbang, et al. Effects of training data on the study performance of LSTM network[J]. Journal of China Hydrology, 2022, 42(1): 29−34, 22.
    [23]
    Zhuang Fuzhen, Qi Zhiyuan, Duan Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43−76. doi: 10.1109/JPROC.2020.3004555
    [24]
    黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展[J]. 中国图象图形学报, 2022, 27(3): 672−686. doi: 10.11834/jig.210814

    Li Ying, Song Peihua. Review of transfer learning in medical image classification[J]. Journal of Image and Graphics, 2022, 27(3): 672−686. doi: 10.11834/jig.210814
    [25]
    张晓, 李业刚, 王栋, 等. 基于迁移学习的社交评论命名实体识别[J]. 计算机应用与软件, 2022, 39(1): 143−150.

    Zhang Xiao, Li Yegang, Wang Dong, et al. Social comment named entity recognition based on transfer learning[J]. Computer Applications and Software, 2022, 39(1): 143−150.
    [26]
    王义刚, 宋志尧, 姜翠玲, 等. 福建省海湾数模与环境研究: 三沙湾[M]. 北京: 海洋出版社, 2009.

    Wang Yigang, Song Zhiyao, Jiang Cuiling, et al. Numerical Modeling and Environmental Study of Gulf in Fujian Province: Sansha Bay[M]. Beijing: China Ocean Press, 2009.
    [27]
    厦门市地方志编纂委员会. 厦门市志[M]. 北京: 方志出版社, 2004.

    Xiamen Local Chronicle Compilation Committee. County Annals of Xiamen[M]. Beijing: Local Records Publishing House, 2004.
    [28]
    欧阳俊峰. 福建沿海滩涂微型真核生物群落结构及对生物修复的响应[D]. 厦门: 集美大学, 2016.

    Ouyang Junfeng. Microeukaryotic community structure and response to bioremediation in intertidal mudflats of Fujian coast[D]. Xiamen: Jimei University, 2016.
    [29]
    王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8.

    Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8.
    [30]
    Yu Yong, Si Xiaosheng, Hu Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235−1270. doi: 10.1162/neco_a_01199
    [31]
    Pan S J, Yang Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345−1359. doi: 10.1109/TKDE.2009.191
    [32]
    福建省科学技术厅. 大黄鱼养殖[M]. 北京: 海洋出版社, 2004.

    Province Department of Science and Technology of Fujian. Breeding and farming of Pseudosciaena Crocea[M]. Beijing: China Ocean Press, 2004.
    [33]
    Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014.
    [34]
    刘明, 王红蕾, 索良泽. 基于变权组合模型的中长期负荷概率密度预测[J]. 电力系统及其自动化学报, 2019, 31(7): 88−94. doi: 10.3969/j.issn.1003-8930.2019.07.014

    Liu Ming, Wang Honglei, Suo Liangze. Medium- and long-term load probability density forecasting based on variable weight combination model[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 88−94. doi: 10.3969/j.issn.1003-8930.2019.07.014
    [35]
    康俊锋, 谭建林, 方雷, 等. XGBoost-LSTM变权组合模型支持下短期PM2.5浓度预测—以上海为例[J]. 中国环境科学, 2021, 41(9): 4016−4025.

    Kang Junfeng, Tan Jianlin, Fang Lei, et al. Short-term PM2.5 concentration prediction based on XGBoost and LSTM variable weight combination model: a case study of Shanghai[J]. China Environmental Science, 2021, 41(9): 4016−4025.
    [36]
    Benthuysen J A, Oliver E C J, Feng Ming, et al. Extreme marine warming across tropical Australia during austral summer 2015−2016[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1301−1326. doi: 10.1002/2017JC013326
    [37]
    齐庆华, 蔡榕硕. 中国近海海表温度变化的极端特性及其气候特征研究[J]. 海洋学报, 2019, 41(7): 36−51.

    Qi Qinghua, Cai Rongshuo. Analysis on climate characteristics of sea surface temperature extremes in coastal China seas[J]. Haiyang Xuebao, 2019, 41(7): 36−51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article views (228) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return