Citation: | Li Mingyue,Zhen Yu,Li Siqi, et al. Relative contributions of ammonia-oxidizing microorganisms to nitrification potential in sediments from Bohai Sea and South Yellow Sea[J]. Haiyang Xuebao,2023, 45(1):89–101 doi: 10.12284/hyxb2023018 |
[1] |
Seitzinger S. Nitrogen cycle: Out of reach[J]. Nature, 2008, 452(7184): 162−163. doi: 10.1038/452162a
|
[2] |
Jensen K, Sloth N P, Risgaard-Petersen N, et al. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems[J]. Applied and Environmental Microbiology, 1994, 60(6): 2094−2100. doi: 10.1128/aem.60.6.2094-2100.1994
|
[3] |
徐颢铭, 宋国栋, 刘素美, 等. 基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的
Xu Haoming, Song Guodong, Liu Sumei, et al. A sodium hypobromite oxidation-sulfamic acid reduction method for determination of
|
[4] |
Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55: 485−529. doi: 10.1146/annurev.micro.55.1.485
|
[5] |
Norton J M, Stark J M. Regulation and measurement of nitrification in terrestrial systems[J]. Methods in Enzymology, 2011, 486: 343−368.
|
[6] |
李如忠, 阙凤翔, 熊鸿斌, 等. 巢湖十五里河河床地貌单元沉积物硝化速率及污染特征[J]. 环境科学, 2019, 40(1): 211−218.
Li Ruzhong, Que Fengxiang, Xiong Hongbin, et al. Nitrification rates and pollution characteristics of sediments with different geomorphic features in the Shiwuli Stream, Chaohu Lake Basin[J]. Environmental Science, 2019, 40(1): 211−218.
|
[7] |
Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66−74. doi: 10.1126/science.1093857
|
[8] |
Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1985−1995. doi: 10.1111/j.1462-2920.2005.00906.x
|
[9] |
Könneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543−546. doi: 10.1038/nature03911
|
[10] |
Hou Jie, Song Chunlei, Cao Xiuyun, et al. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu)[J]. Water Research, 2013, 47(7): 2285−2296. doi: 10.1016/j.watres.2013.01.042
|
[11] |
Sims A, Horton J, Gajaraj S, et al. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands[J]. Water Research, 2012, 46(13): 4121−4129. doi: 10.1016/j.watres.2012.05.007
|
[12] |
Ouyang Yang, Norton J M, Stark J M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil[J]. Soil Biology and Biochemistry, 2017, 113: 161−172. doi: 10.1016/j.soilbio.2017.06.010
|
[13] |
Islam G M, Vi P, Gilbride K A. Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant[J]. Journal of Environmental Sciences, 2019, 86: 120−130. doi: 10.1016/j.jes.2019.04.031
|
[14] |
Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. The ISME Journal, 2007, 1(7): 660−662. doi: 10.1038/ismej.2007.79
|
[15] |
Bernhard A E, Landry Z C, Blevins A, et al. Abundance of ammonia-oxidizing Archaea and Bacteria along an estuarine salinity gradient in relation to potential nitrification rates[J]. Applied and Environmental Microbiology, 2010, 76(4): 1285−1289. doi: 10.1128/AEM.02018-09
|
[16] |
Zheng Yanling, Hou Lijun, Newell S, et al. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary[J]. Applied and Environmental Microbiology, 2014, 80(1): 408−419. doi: 10.1128/AEM.03035-13
|
[17] |
Christman G D, Cottrell M T, Popp B N, et al. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter[J]. Applied and Environmental Microbiology, 2011, 77(6): 2026−2034. doi: 10.1128/AEM.01907-10
|
[18] |
贺惠, 甄毓, 米铁柱, 等. 乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征[J]. 环境科学, 2015, 36(11): 4068−4073.
He Hui, Zhen Yu, Mi Tiezhu, et al. Distribution of aerobic ammonia-oxidizing microorganisms in sediments from adjacent waters of Rushan Bay[J]. Environmental Science, 2015, 36(11): 4068−4073.
|
[19] |
He Hui, Zhen Yu, Mi Tiezhu, et al. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China[J]. Frontiers in Microbiology, 2018, 9: 116. doi: 10.3389/fmicb.2018.00116
|
[20] |
Prosser J I, Hink L, Gubry-Rangin C, et al. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies[J]. Global Change Biology, 2020, 26(1): 103−118. doi: 10.1111/gcb.14877
|
[21] |
He Hui, Zhen Yu, Mi Tiezhu, et al. Seasonal and spatial distribution of ammonia-oxidizing microorganism communities in surface sediments from the East China Sea[J]. Acta Oceanologica Sinica, 2015, 34(8): 83−92. doi: 10.1007/s13131-015-0710-z
|
[22] |
Jia Zhongjun, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658−1671. doi: 10.1111/j.1462-2920.2009.01891.x
|
[23] |
Bernhard A E, Tucker J, Giblin A E, et al. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient[J]. Environmental Microbiology, 2007, 9(6): 1439−1447. doi: 10.1111/j.1462-2920.2007.01260.x
|
[24] |
Chang Yongkai, Fan Jingfeng, Su Jie, et al. Spatial abundance, diversity, and activity of ammonia-oxidizing bacteria in coastal sediments of the Liaohe Estuary[J]. Current Microbiology, 2017, 74(5): 632−640. doi: 10.1007/s00284-017-1226-x
|
[25] |
Alcamán-Arias M E, Cifuentes-Anticevic J, Díez B, et al. Surface ammonia-oxidizer abundance during the late summer in the West Antarctic coastal system[J]. Frontiers in Microbiology, 2022, 13: 821902. doi: 10.3389/fmicb.2022.821902
|
[26] |
杨韦玲, 胡佳杰, 胡宝兰. 抑制剂在氨氧化微生物研究中的应用[J]. 微生物学报, 2018, 58(10): 1722−1731.
Yang Weiling, Hu Jiajie, Hu Baolan. Application of inhibitors in research of ammonia oxidizing microorganisms[J]. Acta Microbiologica Sinica, 2018, 58(10): 1722−1731.
|
[27] |
Tatti E, Duff A M, Kostrytsia A, et al. Potential nitrification activity reflects ammonia oxidizing bacteria but not archaea activity across a soil-sediment gradient[J]. Estuarine, Coastal and Shelf Science, 2022, 264: 107666. doi: 10.1016/j.ecss.2021.107666
|
[28] |
Ning Xiuren, Lin Chuanlan, Su Jilan, et al. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960−1996[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(11/12): 1079−1091.
|
[29] |
Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11−13): 1161−1174. doi: 10.1016/S0278-4343(03)00089-X
|
[30] |
Li Xinyu, Chen H T, Jiang Xueyan, et al. Impacts of human activities on nutrient transport in the Yellow River: the role of the Water-Sediment Regulation Scheme[J]. Science of the Total Environment, 2017, 592: 161−170. doi: 10.1016/j.scitotenv.2017.03.098
|
[31] |
de Souza M P, Chu D, Zhao M, et al. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard[J]. Plant Physiology, 1999, 119(2): 565−574. doi: 10.1104/pp.119.2.565
|
[32] |
Zheng Yanling, Hou Lijun, Liu Min, et al. Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 8351−8363. doi: 10.1007/s00253-012-4512-3
|
[33] |
Dang Chenyuan, Liu Wen, Lin Yaxuan, et al. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3399−3410. doi: 10.1007/s00253-018-8865-0
|
[34] |
Henriksen K, Hansen J I, Blackburn T H. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters[J]. Marine Biology, 1981, 61(4): 299−304. doi: 10.1007/BF00401569
|
[35] |
Kemp W M, Sampou P, Caffrey J, et al. Ammonium recycling versus denitrification in Chesapeake Bay sediments[J]. Limnology and Oceanography, 1990, 35(7): 1545−1563. doi: 10.4319/lo.1990.35.7.1545
|
[36] |
Tourna M, Stieglmeier M, Spang A, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8420−8425. doi: 10.1073/pnas.1013488108
|
[37] |
Tu Renjie, Jin Wenbiao, Han Songfang, et al. Rapid enrichment and ammonia oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China[J]. Environmental Pollution, 2019, 255: 113258. doi: 10.1016/j.envpol.2019.113258
|
[38] |
Wang Jianhua, He Yan, Zhu Jin, et al. Screening and optimizing of inhibitors for ammonia-oxidizing bacteria in sediments of malodorous river[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 6193−6203. doi: 10.1007/s00253-017-8318-1
|
[39] |
Boatman C D, Murray J W. Modeling exchangeable
|
[40] |
Rysgaard S, Thastum P, Dalsgaard T, et al. Effects of salinity on
|
[41] |
Molina V, Dorador C, Fernández C, et al. The activity of nitrifying microorganisms in a high-altitude Andean wetland[J]. FEMS Microbiology Ecology, 2018, 94(6): fiy062.
|
[42] |
于少兰, 乔延路, 韩彦琼, 等. 好氧氨氧化微生物系统发育及生理生态学差异[J]. 微生物学通报, 2015, 42(12): 2457−2465.
Yu Shaolan, Qiao Yanlu, Han Yanqiong, et al. Differences between ammonia-oxidizing microorganisms in phylogeny and physiological ecology[J]. Microbiology China, 2015, 42(12): 2457−2465.
|
[43] |
Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea[J]. Nature Reviews Microbiology, 2005, 3(6): 479−488. doi: 10.1038/nrmicro1159
|