Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Sun Huimiao,Shen Weiliang,Chen Caifang, et al. Effects of sulfide stress on blood \scriptsize${{\rm {SO}} _4^{2-}} $ concentration and SULT1B1-12 gene expression in Sinonovacula constricta[J]. Haiyang Xuebao,2023, 45(1):62–70 doi: 10.12284/hyxb2023004
Citation: Sun Huimiao,Shen Weiliang,Chen Caifang, et al. Effects of sulfide stress on blood \scriptsize${{\rm {SO}} _4^{2-}} $ concentration and SULT1B1-12 gene expression in Sinonovacula constricta[J]. Haiyang Xuebao,2023, 45(1):62–70 doi: 10.12284/hyxb2023004

Effects of sulfide stress on blood ${{\bf {SO}} _4^{2-}} $ concentration and SULT1B1-12 gene expression in Sinonovacula constricta

doi: 10.12284/hyxb2023004
  • Received Date: 2022-03-25
  • Rev Recd Date: 2022-06-24
  • Available Online: 2022-11-04
  • Publish Date: 2023-01-09
  • As a typical dwelled tidal shellfish, Sinonovacula constricta is often exposed to sulfide-rich environment and shows strong sulfide tolerance. The cytosolic sulfotransferase 1B1 (SULT1B1) is located at downstream of the sulfur metabolism pathway, while it is a key enzyme catalyzing the sulfation reaction and plays an important role in the biotransformation of endogenous substances such as thyroid hormones (THs). In order to study the role of ScSULT1B1-12 in sulfur resistance, the sequence characteristics were analyzed by bioinformatics method. Combined with the changes of blood ${\rm {SO}} _4^{2-} $ concentration, the spatial expression and temporal expression profiles during 72 h sulfide stress (50 μmol/L, 150 μmol/L, 300 μmol/L) were studied. The full-length cDNA of ScSULT1B1-12 gene was 1 100 bp, containing an open reading frame of 897 bp, and encoding 298 amino acids. Sequence analysis showed that ScSULT1B1-12 contains four catalytic active sites (56K, 104N, 106H, and 134A), one PAPS binding domain (YPKSGTXW) at N terminal, and one PAPS binding and dimerization domain (RKGXXGDWKNXFTVXXE) at C terminal, indicating that it was structurally able to catalyze the sulfation reaction. Spatial expression showed that ScSULT1B1-12 was highly expressed in gills, followed by the adductor muscle and hepatopancreas. Blood ${\rm {SO}} _4^{2-} $ concentration decreased, and the expression patterns of ScSULT1B1-12 also declined with fluctuation after sulfide stress, indicating that sulfate can be further transformed to sulfated donors, and ScSULT1B1-12-mediated sulfation may be inhibited to keep THs at a certain level in S. constricta, in order to strengthen the metabolic and immune functions, and make the organism adapt the adverse environment of high sulfide.
  • loading
  • [1]
    Jørgensen B B, Fenchel T. The sulfur cycle of a marine sediment model system[J]. Marine Biology, 1974, 24(3): 189−201. doi: 10.1007/BF00391893
    [2]
    Grieshaber M K, Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide[J]. Annual Review of Physiology, 1998, 60: 33−53. doi: 10.1146/annurev.physiol.60.1.33
    [3]
    Arp A J, Hansen B M, Julian D. Burrow environment and coelomic fluid characteristics of the echiuran worm Urechis caupo from populations at three sites in northern California[J]. Marine Biology, 1992, 113(4): 613−623. doi: 10.1007/BF00349705
    [4]
    Jayamanne S C. Toxicity of hydrogen sulphide to juveniles of Macrobrachium rosenbergii[J]. Journal of the National Science Foundation of Sri Lanka, 1992, 20(2): 191−199. doi: 10.4038/jnsfsr.v20i2.8074
    [5]
    管越强, 裴素蕊, 李泽健. 急性硫化物胁迫对日本沼虾免疫和抗氧化系统的影响[J]. 水生态学杂志, 2011, 32(6): 89−94.

    Guan Yueqiang, Pei Surui, Li Zejian. Effects of acute sulfide stress on immune responses and antioxidant system of Macrobrachium nipponense[J]. Journal of Hydroecology, 2011, 32(6): 89−94.
    [6]
    Konishi M, Watsuji T O, Nakagawa S, et al. Effects of hydrogen sulfide on bacterial communities on the surface of galatheid crab, Shinkaia crosnieri, and in a bacterial mat cultured in rearing tanks[J]. Microbes and Environments, 2013, 28(1): 25−32. doi: 10.1264/jsme2.ME12070
    [7]
    Duan Yafei, Dong Hongbiao, Wang Yun, et al. Intestine oxidative stress and immune response to sulfide stress in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2017, 63: 201−207.
    [8]
    Bora P, Chauhan P, Pardeshi K A, et al. Small molecule generators of biologically reactive sulfur species[J]. RSC Advances, 2018, 8(48): 27359−27374. doi: 10.1039/C8RA03658F
    [9]
    Coughtrie M W H, Sharp S, Maxwell K, et al. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases[J]. Chemico-Biological Interactions, 1998, 109(1/3): 3−27.
    [10]
    Cooper R L, Zorrilla L M. 4.12-The hypothalamic-pituitary-thyroid axis as a target for environmental chemicals[J]. Comprehensive Toxicology, 2018, 4: 230−275.
    [11]
    Shen Yaoyao, Chen Jiaqi, Shen Weiliang, et al. Molecular characterization of a novel sulfide: quinone oxidoreductase from the razor clam Sinonovacula constricta and its expression response to sulfide stress[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020, 239: 110367. doi: 10.1016/j.cbpb.2019.110367
    [12]
    Chen Caifang, Shen Yaoyao, Shen Weiliang, et al. Defense responses of sulfur dioxygenase to sulfide stress in the razor clam Sinonovacula constricta[J]. Genes & Genomics, 2021, 43(5): 513−522.
    [13]
    沈瑶瑶. 硫化物胁迫下缢蛏2个关键硫代谢基因的响应研究[D]. 宁波: 宁波大学, 2019

    Shen Yaoyao. Response of two key sulfur metabolism genes in Sinonovacula constricta under sulfide stress[D]. Ningbo: Ningbo University, 2019.
    [14]
    Zhao Xuelin, Fu Jianping, Jiang Liting, et al. Transcriptome-based identification of the optimal reference genes as internal controls for quantitative RT-PCR in razor clam (Sinonovacula constricta)[J]. Genes & Genomics, 2018, 40(6): 603−613.
    [15]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the $ 2^{-\Delta\Delta C_T}$ method[J]. Methods, 2002, 25(4): 402−408.
    [16]
    Kauffman F C. Sulfonation in pharmacology and toxicology[J]. Drug Metabolism Reviews, 2004, 36(3/4): 823−843.
    [17]
    Liu T A, Liu M C, Yang Y S. Immunohistochemical analysis of a novel dehydroepiandrosterone sulfotransferase-like protein in Drosophila neural circuits[J]. Biochemical and Biophysical Research Communications, 2008, 367(1): 14−20. doi: 10.1016/j.bbrc.2007.12.082
    [18]
    Glatt H, Engelke C E H, Pabel U, et al. Sulfotransferases: genetics and role in toxicology[J]. Toxicology Letters, 2000, 112−113: 341−348. doi: 10.1016/S0378-4274(99)00214-3
    [19]
    Uno Y, Uehara S, Inoue T, et al. Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets[J]. Biochemical Pharmacology, 2020, 172: 113748. doi: 10.1016/j.bcp.2019.113748
    [20]
    Petrotchenko E V, Pedersen L C, Borchers C H, et al. The dimerization motif of cytosolic sulfotransferases[J]. FEBS Letters, 2001, 490(1/2): 39−43.
    [21]
    Kiehlbauch C C, Lam Y F, Ringer D P. Homodimeric and heterodimeric aryl sulfotransferases catalyze the sulfuric acid esterification of N-hydroxy-2-acetylaminofluorene[J]. Journal of Biological Chemistry, 1995, 270(32): 18941−18947. doi: 10.1074/jbc.270.32.18941
    [22]
    Weitzner B, Meehan T, Xu Qifang, et al. An unusually small dimer interface is observed in all available crystal structures of cytosolic sulfotransferases[J]. Proteins: Structure, Function, and Bioinformatics, 2009, 75(2): 289−295. doi: 10.1002/prot.22347
    [23]
    Tibbs Z E, Falany C N. An engineered heterodimeric model to investigate SULT1B1 dependence on intersubunit communication[J]. Biochemical Pharmacology, 2016, 115: 123−133. doi: 10.1016/j.bcp.2016.06.011
    [24]
    陈修报, 郑浩然, 王洋, 等. 基于原代培养背角无齿蚌鳃细胞的镉毒性效应评价[J]. 环境科学学报, 2020, 40(7): 2665−2670. doi: 10.13671/j.hjkxxb.2020.0037

    Chen Xiubao, Zheng Haoran, Wang Yang, et al. Cytotoxicity assessment of cadmium on primary gill cell culture from Anodonta woodiana[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2665−2670. doi: 10.13671/j.hjkxxb.2020.0037
    [25]
    Bartholomew T C, Powell G M, Dodgson K S, et al. Oxidation of sodium sulphide by rat liver, lungs and kidney[J]. Biochemical Pharmacology, 1980, 29(18): 2431−2437. doi: 10.1016/0006-2952(80)90346-9
    [26]
    Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa[J]. Biochemical Pharmacology, 2001, 62(2): 255−259. doi: 10.1016/S0006-2952(01)00657-8
    [27]
    Meerman J H N, Ringer D P, Coughtrie M W H, et al. Sulfation of carcinogenic aromatic hydroxylamines and hydroxamic acids by rat and human sulfotransferases: substrate specificity, developmental aspects and sex differences[J]. Chemico-Biological Interactions, 1994, 92(1/3): 321−328.
    [28]
    郑清梅, 刘兴隆, 郭江山, 等. 粤东海产经济贝类重金属含量与暴露风险评价[J]. 农业资源与环境学报, 2019, 36(1): 105−114. doi: 10.13254/j.jare.2018.0085

    Zheng Qingmei, Liu Xinglong, Guo Jiangshan, et al. Analysis of heavy metal concentrations in marine economic shellfish from eastern Guangdong Province and its health risk[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 105−114. doi: 10.13254/j.jare.2018.0085
    [29]
    邴晓菲, 吴海燕, 王群, 等. 麻痹性贝类毒素在栉孔扇贝体内的代谢轮廓[J]. 中国水产科学, 2017, 24(3): 623−632. doi: 10.3724/SP.J.1118.2017.16331

    Bing Xiaofei, Wu Haiyan, Wang Qun, et al. Metabolic profile of paralytic shellfish toxin in scallop Chlamys farreri[J]. Journal of Fishery Sciences of China, 2017, 24(3): 623−632. doi: 10.3724/SP.J.1118.2017.16331
    [30]
    Kester M H A, Bulduk S, van Toor H, et al. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters[J]. The Journal of Clinical Endocrinology & Metabolism, 2002, 87(3): 1142−1150.
    [31]
    郭一帆, 陈佩杰, 肖卫华. 甲状腺激素对骨骼肌功能的调控及其机制[J]. 中国运动医学杂志, 2020, 39(8): 649−652. doi: 10.3969/j.issn.1000-6710.2020.08.010

    Guo Yifan, Chen Peijie, Xiao Weihua. Thyroid hormone regulation and mechanism of skeletal muscle function[J]. Chinese Journal of Sports Medicine, 2020, 39(8): 649−652. doi: 10.3969/j.issn.1000-6710.2020.08.010
    [32]
    王丹丹. 甲状腺激素受体相关蛋白3的分子生物学功能研究[D]. 合肥: 安徽医科大学, 2021.

    Wang Dandan. Molecular biology function of thyroid hormone receptor associated protein 3[D]. Hefei: Anhui Medical University, 2021.
    [33]
    Yen P M. Physiological and molecular basis of thyroid hormone action[J]. Physiological Reviews, 2001, 81(3): 1097−1142. doi: 10.1152/physrev.2001.81.3.1097
    [34]
    Lam S H, Sin Y M, Gong Z, et al. Effects of thyroid hormone on the development of immune system in zebrafish[J]. General and Comparative Endocrinology, 2005, 142(3): 325−335. doi: 10.1016/j.ygcen.2005.02.004
    [35]
    Sahoo P K. Immunostimulating effect of triiodothyronine: dietary administration of triiodothyronine in rohu (Labeo rohita) enhances immunity and resistance to Aeromonas hydrophila infection[J]. Journal of Applied Ichthyology, 2003, 19(2): 118−122. doi: 10.1046/j.1439-0426.2003.00349.x
    [36]
    陈勇, 华雪铭, 周洪琪, 等. 壳聚糖和益生菌对异育银鲫非特异免疫功能及血清甲状腺激素、皮质醇水平的影响[J]. 水产学报, 2010, 34(5): 711−718. doi: 10.3724/SP.J.1231.2010.06737

    Chen Yong, Hua Xueming, Zhou Hongqi, et al. Effcets of chitosan and probiotics on non-specific immune function and the levels of serum thyroid hormone and cortisol in allogynogenetic silver crucian carp (Carassius auratus gibelio)[J]. Journal of Fisheries of China, 2010, 34(5): 711−718. doi: 10.3724/SP.J.1231.2010.06737
    [37]
    边原, 李刚, 杨勇, 等. 甲状腺激素在免疫应答方面的研究进展[J]. 实用药物与临床, 2015, 18(2): 219−222.

    Bian Yuan, Li Gang, Yang Yong, et al. Research progress of thyroid hormone upon immune response[J]. Practical Pharmacy and Clinical Remedies, 2015, 18(2): 219−222.
  • 表S1 物种拉丁文学名及其NCBI登录号对照表.doc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (183) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return