Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Xu Xiao,Tao Aifeng,Han Xue, et al. Separation method of wind-wave and swell based on the multilayer perceptron[J]. Haiyang Xuebao,2023, 45(2):1–12 doi: 10.12284/hyxb2023001
Citation: Xu Xiao,Tao Aifeng,Han Xue, et al. Separation method of wind-wave and swell based on the multilayer perceptron[J]. Haiyang Xuebao,2023, 45(2):1–12 doi: 10.12284/hyxb2023001

Separation method of wind-wave and swell based on the multilayer perceptron

doi: 10.12284/hyxb2023001
  • Received Date: 2021-06-22
  • Rev Recd Date: 2022-07-23
  • Available Online: 2022-10-19
  • Publish Date: 2023-02-01
  • Separation of wind-wave and swell is the basis for studying the respective characteristics of wind-wave and swell. However, due to the lack of wave spectrum data, it is difficult to popularize and apply separation methods based on wave spectrums. An effective solution is to use wave observations that are easy to obtain, namely basic wave elements to separate wind-wave and swell. Existing methods cannot use basic wave elements to comprehensively calculate the proportions and characteristic parameters of wind-wave and swell. For this reason, this paper introduces machine learning into the separation of wind-wave and swell. Based on the multi-layer perceptron model, a method using wave elements and wind elements to accurately estimate wind-wave and swell parameters is proposed. This method requires each station to provide at least 466 training samples of wave data and 766 or more training samples are recommended. The method is suitable for 3 stations in the Taiwan Strait with its accuracy significantly better than traditional methods based on wave spectrums. The proposed method can provide alternative calculation schemes of wind-wave and swell for stations lacking wave spectrums in this sea area. It helps expand the source of measured data of wind-wave and swell, therefore strengthening the research on the characteristics and early warning and forecasting of wind-wave and swell.
  • loading
  • [1]
    Tao Aifeng, Yan Jin, Pei Ye, et al. Swells of the East China Sea[J]. Journal of Ocean University of China, 2017, 16(4): 674−682. doi: 10.1007/s11802-017-3406-5
    [2]
    徐啸, 陶爱峰, 李雪丁, 等. 基于实测数据的台湾海峡中部波浪特征分析[J]. 热带海洋学报, 2021, 40(1): 12−20.

    Xu Xiao, Tao Aifeng, Li Xueding, et al. Analysis of wave characteristics in the central Taiwan Strait based on measured data[J]. Journal of Tropical Oceanography, 2021, 40(1): 12−20.
    [3]
    汪炳祥, 常瑞芳, 王一飞. 风浪与涌浪的划分判据[J]. 黄渤海海洋, 1990, 8(1): 16−24.

    Wang Bingxiang, Chang Ruifang, Wang Yifei. Criteria of differentiating swell from wind waves[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1990, 8(1): 16−24.
    [4]
    郭佩芳, 施平, 王华, 等. 划分风浪与涌浪的一个新判据—海浪成份及其在南海的应用[J]. 青岛海洋大学学报, 1997, 27(2): 131−137.

    Guo Peifang, Shi Ping, Wang Hua, et al. A new criterion between wind wave and swell wave-by mixed wave composition factors and its application to the South China Sea[J]. Journal of Ocean University of Qingdao, 1997, 27(2): 131−137.
    [5]
    Yang Zheng, Song Lili, Mu Lin, et al. Separation of wind-sea and swell wave heights using altimeter data[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 7564−7567.
    [6]
    Earle M D. Development of algorithms for separation of sea and swell[R]. [S.l.]: National Data Buoy Center Tech, 1984: 53.
    [7]
    Wang D W, Hwang P A. An operational method for separating wind sea and swell from ocean wave spectra[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(12): 2052−2062. doi: 10.1175/1520-0426(2001)018<2052:AOMFSW>2.0.CO;2
    [8]
    Hwang P A, Ocampo-Torres F J, García-Nava H. Wind sea and swell separation of 1D wave spectrum by a spectrum integration method[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(1): 116−128. doi: 10.1175/JTECH-D-11-00075.1
    [9]
    Portilla J, Ocampo-Torres F J, Monbaliu J. Spectral partitioning and identification of wind sea and swell[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(1): 107−122. doi: 10.1175/2008JTECHO609.1
    [10]
    朱绍华, 于文太, 李广帅, 等. 基于双峰海浪谱的风浪和涌浪分离应用研究[J]. 中国造船, 2017, 58(4): 160−167. doi: 10.3969/j.issn.1000-4882.2017.04.019

    Zhu Shaohua, Yu Wentai, Li Guangshuai, et al. Separation of wind wave and swell based on double peak spectrum[J]. Shipbuilding of China, 2017, 58(4): 160−167. doi: 10.3969/j.issn.1000-4882.2017.04.019
    [11]
    林伊楠, 陶爱峰, 李雪丁, 等. 台湾海峡风涌浪分离方法研究[J]. 海洋学报, 2019, 41(11): 25−34.

    Lin Yi’nan, Tao Aifeng, Li Xueding, et al. Study on separation method of wind-wave and swell in the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(11): 25−34.
    [12]
    Hanson J L, Phillips O M. Automated analysis of ocean surface directional wave spectra[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(2): 277−293. doi: 10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2
    [13]
    李水清, 赵栋梁. 风浪和涌浪分离方法的比较[J]. 海洋学报, 2012, 34(2): 23−29.

    Li Shuiqing, Zhao Dongliang. Comparisons on partitioning techniques to identify wind-wave and swell[J]. Haiyang Xuebao, 2012, 34(2): 23−29.
    [14]
    国家市场监督管理总局, 国家标准化管理委员会. GB/T 14914.2-2019, 海洋观测规范 第2部分: 海滨观测[S]. 北京: 中国标准出版社, 2019.

    State Administration of Market Supervision and Administration, State Standardization Administration Commission. GB/T 14914.2-2019, The specification for marine observation-Part 2: offshore observation[S]. Beijing: Standards Press of China, 2019.
    [15]
    Meng Fan, Song Tao, Xu Danya, et al. Forecasting tropical cyclones wave height using bidirectional gated recurrent unit[J]. Ocean Engineering, 2021, 234: 108795. doi: 10.1016/j.oceaneng.2021.108795
    [16]
    Nikoo M R, Kerachian R, Alizadeh M R. A fuzzy KNN-based model for significant wave height prediction in large lakes[J]. Oceanologia, 2018, 60(2): 153−168. doi: 10.1016/j.oceano.2017.09.003
    [17]
    Komen G J, Hasselmann K, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8): 1271−1285. doi: 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
    [18]
    Tolman H L, Abdolali A, Accensi M, et al. User manual and system documentation of WAVEWATCH III (R) version 6.07[M]. USA: NOAA, 2019.
    [19]
    张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57−69. doi: 10.3778/j.issn.1002-8331.2102-0256

    Zhang Chi, Guo Yuan, Li Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57−69. doi: 10.3778/j.issn.1002-8331.2102-0256
    [20]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.
    [21]
    Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010.
    [22]
    Berbić J, Ocvirk E, Carević D, et al. Application of neural networks and support vector machine for significant wave height prediction[J]. Oceanologia, 2017, 59(3): 331−349. doi: 10.1016/j.oceano.2017.03.007
    [23]
    Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
    [24]
    Kaloop M R, Kumar D, Zarzoura F, et al. A wavelet-particle swarm optimization-extreme learning machine hybrid modeling for significant wave height prediction[J]. Ocean Engineering, 2020, 213: 107777. doi: 10.1016/j.oceaneng.2020.107777
    [25]
    王燕, 钟建, 张志远. 支持向量回归的机器学习方法在海浪预测中的应用[J]. 海洋预报, 2020, 37(3): 29−34. doi: 10.11737/j.issn.1003-0239.2020.03.004

    Wang Yan, Zhong Jian, Zhang Zhiyuan. Application of support vector regression in significant wave height forecasting[J]. Marine forecasts, 2020, 37(3): 29−34. doi: 10.11737/j.issn.1003-0239.2020.03.004
    [26]
    李本霞, 吴淑萍, 邢闯, 等. 近海近岸高精度海浪业务化数值预报系统[J]. 海洋预报, 2010, 27(5): 1−6. doi: 10.3969/j.issn.1003-0239.2010.05.001

    Li Benxia, Wu Shuping, Xing Chuang, et al. High precision operational numerical prediction system for offshore and nearshore waves[J]. Marine Forecasts, 2010, 27(5): 1−6. doi: 10.3969/j.issn.1003-0239.2010.05.001
    [27]
    Aertsen W, Kint V, Van Orshoven J, et al. Comparison and ranking of different modelling techniques for prediction of site index in mediterranean mountain forests[J]. Ecological Modelling, 2010, 221(8): 1119−1130. doi: 10.1016/j.ecolmodel.2010.01.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (571) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return