Citation: | He Dongbin,Ma Yuxiang,Dong Guohai. A numerical investigation on wave height and wave setup of irregular wave propagation at the reef flat with porous media[J]. Haiyang Xuebao,2022, 44(10):163–172 doi: 10.12284/hyxb2022182 |
[1] |
陈洪洲, 毕春伟, 高俊亮. 波浪在珊瑚岸礁礁坪上传播变形的数值研究[J]. 水科学进展, 2018, 29(2): 252−259. doi: 10.14042/j.cnki.32.1309.2018.02.013
Chen Hongzhou, Bi Chunwei, Gao Junliang. Numerical study of wave transformation over fringing reef flat[J]. Advances in Water Science, 2018, 29(2): 252−259. doi: 10.14042/j.cnki.32.1309.2018.02.013
|
[2] |
Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797−1808. doi: 10.1029/JC084iC04p01797
|
[3] |
Feddersen F, Guza R T. Observations of nearshore circulation: alongshore uniformity[J]. Journal of Geophysical Research: Oceans, 2003, 108(C1): 3006. doi: 10.1029/2001JC001293
|
[4] |
刘铁威, 屈科, 黄竞萱, 等. 孤立波在透水岸礁上水动力特性数值模拟研究[J]. 水动力学研究与进展(A辑), 2021, 36(2): 180−191.
Liu Tiewei, Qu Ke, Huang Jingxuan, et al. Numerical investigation of hydrodynamic characteristics of solitary wave over permeable fringing reef[J]. Chinese Journal of Hydrodynamics (A), 2021, 36(2): 180−191.
|
[5] |
Losada I J. Recent advances in the modeling of wave and permeable structure interaction[M]//Liu P L F. Advances in Coastal and Ocean Engineering. Signapore: World Scientific, 2001: 163−202.
|
[6] |
Bear J. Dynamics of fluids in porous media[J]. Soil Science Society of America Journal, 1973, 37(4): 195−208.
|
[7] |
Polubarinova-Kochina P Y. Theory of Ground Water Movement[M]. Princeton: Princeton University Press, 1962.
|
[8] |
Van Gent M R A. Wave interaction with permeable coastal structures[D]. Delft: Technische Universiteit Delft, 1995.
|
[9] |
Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering, 2002, 46(1): 25−50. doi: 10.1016/S0378-3839(02)00045-5
|
[10] |
Ma Gangfeng, Shi Fengyan, Hsiao S C, et al. Non-hydrostatic modeling of wave interactions with porous structures[J]. Coastal Engineering, 2014, 91: 84−98. doi: 10.1016/j.coastaleng.2014.05.004
|
[11] |
Liu P L F, Lin Pengzhi, Chang K A, et al. Numerical modeling of wave interaction with porous structures[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1999, 125(6): 322−330. doi: 10.1061/(ASCE)0733-950X(1999)125:6(322)
|
[12] |
Hieu P D, Tanimoto K. Verification of a VOF-based two-phase flow model for wave breaking and wave-structure interactions[J]. Ocean Engineering, 2006, 33(11/12): 1565−1588.
|
[13] |
Nakayama A, Kuwahara F. A macroscopic turbulence model for flow in a porous medium[J]. Journal of Fluids Engineering, 1999, 121(2): 427−433. doi: 10.1115/1.2822227
|
[14] |
张少华, 马玉祥, 艾丛芳, 等. 基于数值模拟的非线性波浪在直立墙上爬高的研究[J]. 水动力学研究与进展(A辑), 2020, 35(5): 575−583.
ZhangShaohua, Ma Yuxiang, Ai Congfeng, et al. Study of nonlinear wave run-up on a vertical structure based on numerical simulation[J]. Chinese Journal of Hydrodynamics (A), 2020, 35(5): 575−583.
|
[15] |
马小舟, 马建兴, 马玉祥, 等. 基于非静压模型的波浪空间聚焦研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(4): 128−135.
Ma Xiaozhou, Ma Jianxing, Ma Yuxiang, et al. Research on spatial wave focusing based on non-hydrostatic wave model[J]. Periodical of Ocean University of China, 2020, 50(4): 128−135.
|
[16] |
张景新. 基于非静压模型的波浪破碎模拟[J]. 水科学进展, 2017, 28(3): 438−444. doi: 10.14042/j.cnki.32.1309.2017.03.015
Zhang Jingxin. Wave breaking simulation by non-hydrostatic numerical model[J]. Advances in Water Science, 2017, 28(3): 438−444. doi: 10.14042/j.cnki.32.1309.2017.03.015
|
[17] |
Ai Congfang, Jin Sheng. A multi-layer non-hydrostatic model for wave breaking and run-up[J]. Coastal Engineering, 2012, 62: 1−8. doi: 10.1016/j.coastaleng.2011.12.012
|
[18] |
He Dongbin, Ma Yuxiang, Dong Guohai, et al. Predicting deep water wave breaking with a non-hydrostatic shock-capturing model[J]. Ocean Engineering, 2020, 216: 108041. doi: 10.1016/j.oceaneng.2020.108041
|
[19] |
Derakhti M, Kirby J T, Shi Fengyan, et al. NHWAVE: consistent boundary conditions and turbulence modeling[J]. Ocean Modelling, 2016, 106: 121−130. doi: 10.1016/j.ocemod.2016.09.002
|
[20] |
Buckley M L, Lowe R J, Hansen J E, et al. Wave setup over a fringing reef with large bottom roughness[J]. Journal of Physical Oceanography, 2016, 46(8): 2317−2333. doi: 10.1175/JPO-D-15-0148.1
|
[21] |
何文润, 姚宇, 唐政江, 等. 粗糙珊瑚岸礁礁面附近波浪增水实验研究[J]. 海洋科学进展, 2019, 37(3): 409−416. doi: 10.3969/j.issn.1671-6647.2019.03.005
He Wenrun, Yao Yu, Tang Zhengjiang, et al. Experimental study on the wave-induced setup around rough fringing reef[J]. Advances in Marine Science, 2019, 37(3): 409−416. doi: 10.3969/j.issn.1671-6647.2019.03.005
|
[22] |
杨笑笑, 姚宇, 何天城, 等. 大糙率珊瑚礁附近规则波非线性特征实验研究[J]. 海洋学研究, 2020, 38(2): 9−15. doi: 10.3969/j.issn.1001-909X.2020.02.002
Yang Xiaoxiao, Yao Yu, He Tiancheng, et al. Laboratory study of monochromatic wave nonlinear characteristics around reefs with large bottom roughness[J]. Journal of Marine Sciences, 2020, 38(2): 9−15. doi: 10.3969/j.issn.1001-909X.2020.02.002
|
[23] |
Lowe R J, Falter J L, Bandet M D, et al. Spectral wave dissipation over a barrier reef[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04001.
|
[24] |
Nepf H M, Vivoni E R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28547−28557. doi: 10.1029/2000JC900145
|
[25] |
Bouws E, Günther H, Rosenthal W, et al. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 975−986. doi: 10.1029/JC090iC01p00975
|
[26] |
Willmott C J. On the validation of models[J]. Physical Geography, 1981, 2(2): 184−194. doi: 10.1080/02723646.1981.10642213
|
[27] |
Apotsos A, Raubenheimer B, Elgar S, et al. Effects of wave rollers and bottom stress on wave setup[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02003.
|
[28] |
Franklin G, Mariño-Tapia I, Torres-Freyermuth A. Effects of reef roughness on wave setup and surf zone currents[J]. Journal of Coastal Research, 2013, 65(S2): 2005−2010.
|
[29] |
Lowe R J, Falter J L, Koseff J R, et al. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C050185.
|
[30] |
Yao Yu, Liu Yicheng, Chen Long, et al. Study on the wave-driven current around the surf zone over fringing reefs[J]. Ocean Engineering, 2020, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968
|
[31] |
Lara J L, del Jesus M, Losada I J. Three-dimensional interaction of waves and porous coastal structures: Part II: experimental validation[J]. Coastal Engineering, 2012, 64: 26−46. doi: 10.1016/j.coastaleng.2012.01.009
|
[32] |
Wu Yunta, Hsiao S C. Propagation of solitary waves over a submerged permeable breakwater[J]. Coastal Engineering, 2013, 81: 1−18. doi: 10.1016/j.coastaleng.2013.06.005
|