Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Chen Xinyi,Liang Yueqin,Zheng Yishan, et al. Spatial distribution characteristics and driving factors of benthic ciliates in northern China[J]. Haiyang Xuebao,2022, 44(10):140–151 doi: 10.12284/hyxb2022164
Citation: Chen Xinyi,Liang Yueqin,Zheng Yishan, et al. Spatial distribution characteristics and driving factors of benthic ciliates in northern China[J]. Haiyang Xuebao,2022, 44(10):140–151 doi: 10.12284/hyxb2022164

Spatial distribution characteristics and driving factors of benthic ciliates in northern China

doi: 10.12284/hyxb2022164
  • Received Date: 2022-03-20
  • Rev Recd Date: 2022-05-27
  • Available Online: 2022-06-10
  • Publish Date: 2022-10-01
  • In October 2020, we sampled the benthic ciliate communities in 14 sandy intertidal zones in northern China to gain insight into the relative influence of diverse geographical scale parameters on driving the spatial pattern of microbial communities. The main findings were as follow: (1) 105 ciliates were identified belonging to 65 genera and 26 orders, and Pleuronematida, Microthoracida, and Cyclotrichida were the dominant groups; (2) although significant differences in environmental conditions were detected between the Yellow Sea and the Bohai Sea, the community composition of ciliates did not show significant difference; (3) partial Mental test revealed that environmental factors were more important than spatial distance in determining ciliate community composition, with salinity, grain size, and beach slope were the most important environmental factors in explaining ciliate spatial distribution, while tidal range and dissolved inorganic nitrogen content were less important; (4) in coastal areas, the mass effect of microorganisms somewhat hided the effects of environmental heterogeneity. In conclusion, because microorganisms in coastal environments were less restricted by dispersal, environmental variables played a larger role in the establishment of spatial distribution patterns than spatial distance. This research gives basic information on marine microbial biogeography, which can aid beach management and conservation planning in the face of global change.
  • loading
  • [1]
    Cottenie K. Integrating environmental and spatial processes in ecological community dynamics[J]. Ecology Letters, 2005, 8(11): 1175−1182. doi: 10.1111/j.1461-0248.2005.00820.x
    [2]
    Erős T, Sály P, Takács P, et al. Temporal variability in the spatial and environmental determinants of functional metacommunity organization-stream fish in a human-modified landscape[J]. Freshwater Biology, 2012, 57(9): 1914−1928. doi: 10.1111/j.1365-2427.2012.02842.x
    [3]
    Mellin C, Bradshaw C J A, Meekan M G, et al. Environmental and spatial predictors of species richness and abundance in coral reef fishes[J]. Global Ecology and Biogeography, 2010, 19(2): 212−222. doi: 10.1111/j.1466-8238.2009.00513.x
    [4]
    de Maçaneiro J P, Oliveira L Z, Seubert R C, et al. More than environmental control at local scales: do spatial processes play an important role in floristic variation in subtropical forests?[J]. Acta Botanica Brasilica, 2016, 30(2): 183−192. doi: 10.1590/0102-33062015abb0294
    [5]
    Ribeiro K F, da Rocha C M, de Castro D, et al. Distribution and coexistence patterns of phytoplankton in subtropical shallow lakes and the role of niche-based and spatial processes[J]. Hydrobiologia, 2018, 814(1): 233−246. doi: 10.1007/s10750-018-3539-6
    [6]
    Soininen J. Macroecology of unicellular organisms-patterns and processes[J]. Environmental Microbiology Reports, 2012, 4(1): 10−22. doi: 10.1111/j.1758-2229.2011.00308.x
    [7]
    Chu Haiyan, Sun Haobo, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau[J]. Environmental Microbiology, 2016, 18(5): 1523−1533. doi: 10.1111/1462-2920.13236
    [8]
    Plante C J, Hill-Spanik K, Cook M, et al. Environmental and spatial influences on biogeography and community structure of saltmarsh benthic diatoms[J]. Estuaries and Coasts, 2021, 44(1): 147−161. doi: 10.1007/s12237-020-00779-0
    [9]
    Xu Y, Soininen J. Spatial patterns of functional diversity and composition in marine benthic ciliates along the coast of China[J]. Marine Ecology Progress Series, 2019, 627: 49−60. doi: 10.3354/meps13086
    [10]
    Passy S I. A distinct latitudinal gradient of diatom diversity is linked to resource supply[J]. Ecology, 2010, 91(1): 36−41. doi: 10.1890/09-0545.1
    [11]
    Zhou Zhenghu, Wang Chuankuan, Luo Yiqi. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. doi: 10.1038/s41467-020-16881-7
    [12]
    Heino J, Melo A S, Siqueira T, et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects[J]. Freshwater Biology, 2015, 60(5): 845−869. doi: 10.1111/fwb.12533
    [13]
    Hua Er, Zhang Zhinan, Zhou Hong, et al. Meiofauna distribution in intertidal sandy beaches along China shoreline (18°–40°N)[J]. Journal of Ocean University of China, 2016, 15(1): 19−27. doi: 10.1007/s11802-016-2740-3
    [14]
    Nel R, Campbell E E, Harris L, et al. The status of sandy beach science: past trends, progress, and possible futures[J]. Estuarine, Coastal and Shelf Science, 2014, 150: 1−10. doi: 10.1016/j.ecss.2014.07.016
    [15]
    Tarragô L D, Ferreira P M A, Utz L R P. Benthic marine ciliate assemblages from southern Brazil and their relationship with seasonality and urbanization level[J]. Diversity, 2020, 12(1): 16.
    [16]
    Wickham S, Gieseke A, Berninger U G. Benthic ciliate identification and enumeration: an improved methodology and its application[J]. Aquatic Microbial Ecology, 2000, 22(1): 79−91.
    [17]
    Fenchel T. The ecology of marine microbenthos I. The quantitative importance of ciliates as compared with metazoans in various types of sediments[J]. Ophelia, 1967, 4(2): 121−137. doi: 10.1080/00785326.1967.10409616
    [18]
    徐奎栋. 海洋微型底栖生物的多样性与地理分布[J]. 生物多样性, 2011, 19(6): 661−675.

    Xu Kuidong. Biodiversity and biogeography of marine microbenthos: progress and prospect[J]. Biodiversity Science, 2011, 19(6): 661−675.
    [19]
    Huang H, Yang Jinpeng, Huang Shixiang, et al. Spatial distribution of planktonic ciliates in the western Pacific Ocean: along the transect from Shenzhen (China) to Pohnpei (Micronesia)[J]. Marine Life Science & Technology, 2021, 3(1): 103−115.
    [20]
    Lynn D H. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature[M]. 3rd ed. New York: Springer, 2008.
    [21]
    Xu Yuan, Stoeck T, Forster D, et al. Environmental status assessment using biological traits analyses and functional diversity indices of benthic ciliate communities[J]. Marine Pollution Bulletin, 2018, 131: 646−654. doi: 10.1016/j.marpolbul.2018.04.064
    [22]
    Hamels I, Muylaert K, Sabbe K, et al. Contrasting dynamics of ciliate communities in sandy and silty sediments of an estuarine intertidal flat[J]. European Journal of Protistology, 2005, 41(4): 241−250. doi: 10.1016/j.ejop.2005.02.002
    [23]
    Xu Yuan, Soininen J, Zhang Shukun, et al. Disentangling the relative roles of natural and anthropogenic-induced stressors in shaping benthic ciliate diversity in a heavily disturbed bay[J]. Science of the Total Environment, 2021, 801: 149683. doi: 10.1016/j.scitotenv.2021.149683
    [24]
    Tirjaková E, Krajčovičová K, Illyová M, et al. Interaction of ciliate communities with cyanobacterial water bloom in a shallow, hypertrophic reservoir[J]. Acta Protozoologica, 2016, 55(3): 173−188.
    [25]
    Kosiba J, Krztoń W, Wilk-Woźniak E. Effect of microcystins on proto- and metazooplankton is more evident in artificial than in natural waterbodies[J]. Microbial Ecology, 2018, 75(2): 293−302. doi: 10.1007/s00248-017-1058-z
    [26]
    Barboza F R, Defeo O. Global diversity patterns in sandy beach macrofauna: a biogeographic analysis[J]. Scientific Reports, 2015, 5: 14515. doi: 10.1038/srep14515
    [27]
    Azovsky A I, Mazei Y A, Saburova M A, et al. Patterns in diversity and composition of the microbenthos of subarctic intertidal beaches with different morphodynamics[J]. Marine Ecology Progress Series, 2020, 648: 19−38. doi: 10.3354/meps13419
    [28]
    Li Guihao, Su Lei, Zhang Qianqian, et al. Molecular diversity and biogeography of benthic ciliates in the Bohai Sea and Yellow Sea[J]. Acta Oceanologica Sinica, 2019, 38(2): 78−86. doi: 10.1007/s13131-018-1236-y
    [29]
    Pan Yongbo, Yang Jun, McManus G B, et al. Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales[J]. Limnology and Oceanography, 2020, 65(5): 1103−1115. doi: 10.1002/lno.11375
    [30]
    Liu Weiwei, McManus G B, Lin Xiaofeng, et al. Distribution patterns of ciliate diversity in the South China Sea[J]. Frontiers in Microbiology, 2021, 12: 689688. doi: 10.3389/fmicb.2021.689688
    [31]
    Zhao Feng, Filker S, Xu Kuidong, et al. Microeukaryote communities exhibit phyla-specific distance-decay patterns and an intimate link between seawater and sediment habitats in the western Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 160: 103279. doi: 10.1016/j.dsr.2020.103279
    [32]
    刘世昊, 丰爱平, 夏东兴, 等. 辽东湾西岸典型岬湾海滩表层沉积物粒度分布特征及水动力条件浅析[J]. 沉积学报, 2014, 32(4): 700−709.

    Liu Shihao, Feng Aiping, Xia Dongxing, et al. Grain-size distribution of surface sediments of two typical headland-bay beaches on western Liaodong Bay, Bohai Sea and simply analysis of hydrodynamic conditions[J]. Acta Sedimentologica Sinica, 2014, 32(4): 700−709.
    [33]
    岳保静, 廖晶, 高茂生, 等. 山东半岛砂质海滩动力地貌演化特征[J]. 海洋科学, 2017, 41(4): 118−127. doi: 10.11759/hykx20161107001

    Yue Baojing, Liao Jing, Gao Maosheng, et al. Evolutionary features of morphodynamics of sandy beaches on the Shandong Peninsula[J]. Marine Sciences, 2017, 41(4): 118−127. doi: 10.11759/hykx20161107001
    [34]
    刘宗宇, 杨丽中, 乔守文, 等. 山东省滨海沙滩现状调查[J]. 海洋科学, 2020, 44(9): 121−129.

    Liu Zongyu, Yang Lizhong, Qiao Shouwen, et al. Investigation of coastal beaches in Shandong Province[J]. Marine Sciences, 2020, 44(9): 121−129.
    [35]
    宣俊, 李海波, 王超锋, 等. 黑潮及相邻海域表层砂壳纤毛虫分布模式: 以夏季黄海、东海至西太平洋断面为例[J]. 海洋科学, 2022, 46(2): 28−36.

    Xuan Jun, Li Haibo, Wang Chaofeng, et al. Summertime tintinnid community in the surface waters of the Kuroshio and adjacent waters: a case study along a transect from the Yellow Sea and East China Sea to the West Pacific[J]. Marine Sciences, 2022, 46(2): 28−36.
    [36]
    于莹, 王宇, 张博伦, 等. 渤海湾浮游纤毛虫丰度和生物量的周年变化[J]. 生态学报, 2022, 42(9): 3822−3831.

    Yu Ying, Wang Yu, Zhang Bolun, et al. Annual variation of abundance and biomass of planktonic ciliates in the Bohai Bay, China[J]. Acta Ecologica Sinica, 2022, 42(9): 3822−3831.
    [37]
    周百灵, 维妙, 李菊, 等. 黄海底栖纤毛虫的群落结构与时空变化[J]. 海洋与湖沼, 2016, 47(2): 336−345.

    Zhou Bailing, Wei Miao, Li Ju, et al. Community structure and spatiotemporal variation of benthic ciliates in the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2016, 47(2): 336−345.
    [38]
    Xu Kuidong, Du Yongfen, Lei Yanli, et al. A practical method of Ludox density gradient centrifugation combined with protargol staining for extracting and estimating ciliates in marine sediments[J]. European Journal of Protistology, 2010, 46(4): 263−270. doi: 10.1016/j.ejop.2010.04.005
    [39]
    宋微波, 沃伦A, 胡晓钟. 中国黄渤海的自由生纤毛虫[M]. 北京: 科学出版社, 2009.

    Song Weibo, Alan W, Hu Xiaozhong. Free-Living Ciliates in the Bohai and Yellow Seas, China[M]. Beijing: Science Press, 2009.
    [40]
    Pratt J R, Cairns Jr J. Functional groups in the protozoa: roles in differing ecosystems[J]. The Journal of Protozoology, 1985, 32(3): 415−423. doi: 10.1111/j.1550-7408.1985.tb04037.x
    [41]
    Fenchel T. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa[J]. Ophelia, 1969, 6(1): 1−182. doi: 10.1080/00785326.1969.10409647
    [42]
    韩永强, 夏嘉, 谭靖千, 等. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学, 2020, 44(3): 93−103. doi: 10.11759/hykx20191012002

    Han Yongqiang, Xia Jia, Tan Jingqian, et al. Distribution and controlling factors of organic carbon in surface sediments of the coastal region surrounding Leizhou Peninsula[J]. Marine Sciences, 2020, 44(3): 93−103. doi: 10.11759/hykx20191012002
    [43]
    Hossain G M, Bhuiyan M A H. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh[J]. KSCE Journal of Civil Engineering, 2016, 20(1): 163−174. doi: 10.1007/s12205-015-0333-0
    [44]
    顾福康. 原生动物学概论[M]. 北京: 高等教育出版社, 1991.

    Gu Fukang. Introduction to Protozoology[M]. Beijing: Higher Education Press, 1991.
    [45]
    Defeo O, Gomez J, Lercari D. Testing the swash exclusion hypothesis in sandy beach populations: the mole crab Emerita brasiliensis in Uruguay[J]. Marine Ecology Progress Series, 2001, 212: 159−170. doi: 10.3354/meps212159
    [46]
    McLachlan A, Dorvlo A. Global patterns in sandy beach macrobenthic communities: biological factors[J]. Journal of Coastal Research, 2007, 23(5): 1081−1087. doi: 10.2112/04-0408.1
    [47]
    Defeo O, McLachlan A. Global patterns in sandy beach macrofauna: species richness, abundance, biomass and body size[J]. Geomorphology, 2013, 199: 106−114. doi: 10.1016/j.geomorph.2013.04.013
    [48]
    Mazei Y A, Burkovskii I V, Stolyarov A P. Salinity as a factor of forming ciliate community (Colonization Experiments)[J]. Zoologicheskiĭ Zhurnal, 2002, 81(4): 387−393.
    [49]
    Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(1): 56−63. doi: 10.1038/sj/jim/7000176
    [50]
    Finlay B J, Esteban G F, Brown S, et al. Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies[J]. Protist, 2006, 157(4): 377−390. doi: 10.1016/j.protis.2006.05.012
    [51]
    Virta L, Soininen J, Norkko A. Diversity and distribution across a large environmental and spatial gradient: evaluating the taxonomic and functional turnover, transitions and environmental drivers of benthic diatom communities[J]. Global Ecology and Biogeography, 2020, 29(12): 2214−2228. doi: 10.1111/geb.13190
    [52]
    Mo Yuanyuan, Peng Feng, Gao Xiaofei, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1): 128. doi: 10.1186/s40168-021-01079-w
    [53]
    Wang Yibo, Zhang Wenjing, Lin Yuanshao, et al. Phosphorus, nitrogen and chlorophyll a are significant factors controlling ciliate communities in summer in the northern Beibu Gulf, South China Sea[J]. PLoS One, 2014, 9(7): e101121. doi: 10.1371/journal.pone.0101121
    [54]
    Xu Kuidong, Choi J K, Lei Yanli, et al. Marine ciliate community in relation to eutrophication of coastal waters in the Yellow Sea[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(1): 118−127. doi: 10.1007/s00343-011-9106-x
    [55]
    Howarth R W, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades[J]. Limnology and Oceanography, 2006, 51(1part2): 364−376. doi: 10.4319/lo.2006.51.1_part_2.0364
    [56]
    Azovsky A I, Chertoprud E S, Garlitska L A, et al. Does size really matter in biogeography? Patterns and drivers of global distribution of marine micro- and meiofauna[J]. Journal of Biogeography, 2020, 47(5): 1180−1192. doi: 10.1111/jbi.13771
    [57]
    Vyverman W, Verleyen E, Sabbe K, et al. Historical processes constrain patterns in global diatom diversity[J]. Ecology, 2007, 88(8): 1924−1931. doi: 10.1890/06-1564.1
    [58]
    Petz W, Valbonesi A, Schiftner U, et al. Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?[J]. FEMS Microbiology Ecology, 2007, 59(2): 396−408. doi: 10.1111/j.1574-6941.2006.00259.x
    [59]
    Hillebrand H, Azovsky A I. Body size determines the strength of the latitudinal diversity gradient[J]. Ecography, 2001, 24(3): 251−256. doi: 10.1034/j.1600-0587.2001.240302.x
    [60]
    Spalding M D, Fox H E, Allen G R, et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas[J]. BioScience, 2007, 57(7): 573−583. doi: 10.1641/B570707
    [61]
    Bortolini J C, Pineda A, Rodrigues L C, et al. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: a metacommunity approach[J]. Freshwater Biology, 2017, 62(10): 1756−1767. doi: 10.1111/fwb.12986
    [62]
    Leibold M A, Holyoak M, Mouquet N, et al. The metacommunity concept: a framework for multi-scale community ecology[J]. Ecology Letters, 2004, 7(7): 601−613. doi: 10.1111/j.1461-0248.2004.00608.x
    [63]
    Heino J, Grönroos M, Ilmonen J, et al. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales[J]. Freshwater Science, 2013, 32(1): 142−154. doi: 10.1899/12-083.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (530) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return