Citation: | Huang Jiahui,Xie Lingling,Li Qiang, et al. Application of eSQG method in vertical velocity diagnosis in the South China Sea[J]. Haiyang Xuebao,2022, 44(12):55–69 doi: 10.12284/hyxb2022153 |
[1] |
Freilich M A, Mahadevan A. Decomposition of vertical velocity for nutrient transport in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1561−1575. doi: 10.1175/JPO-D-19-0002.1
|
[2] |
Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327−335. doi: 10.1038/s41586-019-1098-2
|
[3] |
谢玲玲, 张书文, 赵辉. 琼东上升流研究概述[J]. 热带海洋学报, 2012, 31(4): 35−41. doi: 10.3969/j.issn.1009-5470.2012.04.007
Xie Lingling, Zhang Shuwen, Zhao Hui. Overview of studies on Qiongdong upwelling[J]. Journal of Tropical Oceanography, 2012, 31(4): 35−41. doi: 10.3969/j.issn.1009-5470.2012.04.007
|
[4] |
计超, 徐利强, 张一辉, 等. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97−106. doi: 10.16562/j.cnki.0256-1492.2019092502
Ji Chao, Xu Liqiang, Zhang Yihui, et al. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97−106. doi: 10.16562/j.cnki.0256-1492.2019092502
|
[5] |
Pascual A, Ruiz S, Nardelli B B, et al. Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges[J]. Geophysical Research Letters, 2015, 42(2): 441−449. doi: 10.1002/2014GL062569
|
[6] |
Mahadevan A, Pascual A, Rudnick D L, et al. Coherent pathways for vertical transport from the surface ocean to interior[J]. Bulletin of the American Meteorological Society, 2020, 101(11): E1996−E2004. doi: 10.1175/BAMS-D-19-0305.1
|
[7] |
Portela E, Kolodziejczyk N, Vic C, et al. Physical mechanisms driving oxygen subduction in the global ocean[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089040.
|
[8] |
Liang Xinfeng, Spall M, Wunsch C. Global ocean vertical velocity from a dynamically consistent ocean state estimate[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8208−8224. doi: 10.1002/2017JC012985
|
[9] |
Xie Lingling, Pallàs-Sanz E, Zheng Quanan, et al. Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China[J]. Journal of Physical Oceanography, 2017, 47(4): 755−774. doi: 10.1175/JPO-D-16-0192.1
|
[10] |
Chen Ke, Gaube P, Pallàs-Sanz E. On the vertical velocity and nutrient delivery in warm core rings[J]. Journal of Physical Oceanography, 2020, 50(6): 1557−1582. doi: 10.1175/JPO-D-19-0239.1
|
[11] |
沈萌, 缪明芳, 王舒瑜, 等. 2018年夏季舟山海域上升流特征及形成机制分析[J]. 厦门大学学报(自然科学版), 2020, 59(S1): 18−23.
Shen Meng, Miao Mingfang, Wang Shuyu, et al. Analysis of upwelling characteristics and formation mechanism in the Zhoushan coastal region in the summer of 2018[J]. Journal of Xiamen University (Natural Science), 2020, 59(S1): 18−23.
|
[12] |
Wang Liju, Xie Lingling, Zheng Quanan, et al. Tropical cyclone enhanced vertical transport in the northwestern South China Sea I: mooring observation analysis for Washi (2005)[J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106599. doi: 10.1016/j.ecss.2020.106599
|
[13] |
Legal C, Klein P, Treguier A M, et al. Diagnosis of the vertical motions in a mesoscale stirring region[J]. Journal of Physical Oceanography, 2007, 37(5): 1413−1424. doi: 10.1175/JPO3053.1
|
[14] |
Pietri A, Capet X, D’Ovidio F, et al. Skills and limitations of the adiabatic omega equation: how effective is it to retrieve oceanic vertical circulation at mesoscale and submesoscale?[J]. Journal of Physical Oceanography, 2021, 51(3): 931−954. doi: 10.1175/JPO-D-20-0052.1
|
[15] |
孙春健, 张晓爽, 张寅权, 等. 卫星遥感重构海洋次表层研究进展[J]. 海洋信息, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004
Sun Chunjian, Zhang Xiaoshuang, Zhang Yinquan, et al. Progress in reconstruction of ocean subsurface by satellite remote sensing data[J]. Marine Information, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004
|
[16] |
Klein P, Isern-Fontanet J, Lapeyre G, et al. Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height[J]. Geophysical Research Letters, 2009, 36(12): L12603. doi: 10.1029/2009GL038359
|
[17] |
Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
|
[18] |
Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements[J]. Journal of Physical Oceanography, 2016, 46(3): 947−963. doi: 10.1175/JPO-D-15-0188.1
|
[19] |
Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55−79. doi: 10.1175/JPO-D-19-0172.1
|
[20] |
Liu Lei, Xue Huijie, Sasaki H. Diagnosing subsurface vertical velocities from high-resolution sea surface fields[J]. Journal of Physical Oceanography, 2021, 51(5): 1353−1373. doi: 10.1175/JPO-D-20-0152.1
|
[21] |
Isern-Fontanet J, Chapron B, Lapeyre G, et al. Potential use of microwave sea surface temperatures for the estimation of ocean currents[J]. Geophysical Research Letters, 2006, 33(24): L24608. doi: 10.1029/2006GL027801
|
[22] |
Ponte A L, Klein P, Capet X, et al. Diagnosing surface mixed layer dynamics from high-resolution satellite observations: numerical insights[J]. Journal of Physical Oceanography, 2013, 43(7): 1345−1355. doi: 10.1175/JPO-D-12-0136.1
|
[23] |
Chavanne C P, Klein P. Quasigeostrophic diagnosis of mixed layer dynamics embedded in a mesoscale turbulent field[J]. Journal of Physical Oceanography, 2016, 46(1): 275−287. doi: 10.1175/JPO-D-14-0178.1
|
[24] |
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
|
[25] |
Zheng Quanan, Xie Lingling, Xiong Xuejun, et al. Progress in research of submesoscale processes in the South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(1): 1−13. doi: 10.1007/s13131-019-1521-4
|
[26] |
杨潇霄, 曹海锦, 经志友. 南海上层海洋次中尺度过程空间差异和季节变化特征[J]. 热带海洋学报, 2021, 40(5): 10−24. doi: 10.11978/2020116
Yang Xiaoxiao, Cao Haijin, Jing Zhiyou. Spatial and seasonal differences of the upper-ocean submesoscale processes in the South China Sea[J]. Journal of Tropical Oceanography, 2021, 40(5): 10−24. doi: 10.11978/2020116
|
[27] |
张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(12): 1−11.
Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
|
[28] |
Jing Zhiyou, Qi Yiquan, Du Yan, et al. Summer upwelling and thermal fronts in the northwestern South China Sea: observational analysis of two mesoscale mapping surveys[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1993−2006. doi: 10.1002/2014JC010601
|
[29] |
黄小龙, 经志友, 郑瑞玺, 等. 南海西部夏季上升流锋面的次中尺度特征分析[J]. 热带海洋学报, 2020, 39(3): 1−9.
Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Analysis of submesoscale characteristics of summer upwelling fronts in the western South China Sea[J]. Journal of Tropical Oceanography, 2020, 39(3): 1−9.
|
[30] |
Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05016.
|
[31] |
Lu Wenfang, Yan Xiaohai, Han Lu, et al. One-dimensional ocean model with three types of vertical velocities: a case study in the South China Sea[J]. Ocean Dynamics, 2017, 67(2): 253−262. doi: 10.1007/s10236-016-1029-9
|
[32] |
Isern-Fontanet J, Lapeyre G, Klein P, et al. Three-dimensional reconstruction of oceanic mesoscale currents from surface information[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09005.
|
[33] |
He Zhigang, Wang Dongxiao, Hu Jianyu. Features of eddy kinetic energy and variations of upper circulation in the South China Sea[J]. Acta Oceanologica Sinica, 2002, 21(2): 305−314.
|
[34] |
Cheng Xuhua, Qi Yiquan. Variations of eddy kinetic energy in the South China Sea[J]. Journal of Oceanography, 2010, 66(1): 85−94. doi: 10.1007/s10872-010-0007-y
|
[35] |
Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
|
[36] |
Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea[J]. Scientific Reports, 2016, 6(1): 24338. doi: 10.1038/srep24338
|
[37] |
Zhu Yaohua, Wang Dingqi, Wang Yonggang, et al. Vertical velocity and transport in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(7): 13−25. doi: 10.1007/s13131-021-1954-4
|