Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 12
Jan.  2023
Turn off MathJax
Article Contents
Huang Jiahui,Xie Lingling,Li Qiang, et al. Application of eSQG method in vertical velocity diagnosis in the South China Sea[J]. Haiyang Xuebao,2022, 44(12):55–69 doi: 10.12284/hyxb2022153
Citation: Huang Jiahui,Xie Lingling,Li Qiang, et al. Application of eSQG method in vertical velocity diagnosis in the South China Sea[J]. Haiyang Xuebao,2022, 44(12):55–69 doi: 10.12284/hyxb2022153

Application of eSQG method in vertical velocity diagnosis in the South China Sea

doi: 10.12284/hyxb2022153
  • Received Date: 2022-05-03
  • Rev Recd Date: 2022-07-03
  • Available Online: 2022-08-08
  • Publish Date: 2023-01-17
  • Using 0.1°×0.1° high-resolution temperature, salinity, velocity and sea surface height (SSH) data from the ocean general circulation model for the earth simulator (OFES) model, this study analyzes the capability and applicability of the eSQG (effective Surface Quasi-Geostrophy) method in vertical velocity diagnosis in the South China Sea (SCS), as well as the spatiotemporal variation of vertical velocities. The diagnosed vertical velocities ωeSQG from SSH with the eSQG method are of the same order of 10−5 m/s as the “true” vertical velocities ωOFES from the OFES model. ωeSQG shows spatial variations with higher values in northern basin. The correlation coefficients of the horizontal distribution of ωeSQG and ωOFES (rs) are greater in deep basin than that in the whole SCS, suggesting that the eSQG method is more efficient in vertical velocity diagnosis in deep water far from boundaries. Vertically, the correlation coefficient has maximum values occurring in the subsurface layer at about 150 m. ωeSQG is stronger in summer and rs show seasonal variation with higher values in winter, indicating more efficient in eSQG diagnosis in winter. ωeSQG is reliable in the regions southwest of Taiwan and east of Vietnam, where the temporal correlation coefficients of ωeSQG and ωOFES (rt) exceed 0.6, while ωeSQG is poorly correlated to ωOFES in the shelf regions in the southern and northwestern SCS with rt mostly under 0.2. rs in the same region is varying at periods of about 18−55 d. ωeSQG performs better as the distributions of the SSH and the sea surface density are in same phase. ωeSQG varies little as the temporal resolution of SSH varies, while rs increases as spatial resolution reduced to 0.25° in mesoscales.
  • loading
  • [1]
    Freilich M A, Mahadevan A. Decomposition of vertical velocity for nutrient transport in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1561−1575. doi: 10.1175/JPO-D-19-0002.1
    [2]
    Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327−335. doi: 10.1038/s41586-019-1098-2
    [3]
    谢玲玲, 张书文, 赵辉. 琼东上升流研究概述[J]. 热带海洋学报, 2012, 31(4): 35−41. doi: 10.3969/j.issn.1009-5470.2012.04.007

    Xie Lingling, Zhang Shuwen, Zhao Hui. Overview of studies on Qiongdong upwelling[J]. Journal of Tropical Oceanography, 2012, 31(4): 35−41. doi: 10.3969/j.issn.1009-5470.2012.04.007
    [4]
    计超, 徐利强, 张一辉, 等. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97−106. doi: 10.16562/j.cnki.0256-1492.2019092502

    Ji Chao, Xu Liqiang, Zhang Yihui, et al. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97−106. doi: 10.16562/j.cnki.0256-1492.2019092502
    [5]
    Pascual A, Ruiz S, Nardelli B B, et al. Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges[J]. Geophysical Research Letters, 2015, 42(2): 441−449. doi: 10.1002/2014GL062569
    [6]
    Mahadevan A, Pascual A, Rudnick D L, et al. Coherent pathways for vertical transport from the surface ocean to interior[J]. Bulletin of the American Meteorological Society, 2020, 101(11): E1996−E2004. doi: 10.1175/BAMS-D-19-0305.1
    [7]
    Portela E, Kolodziejczyk N, Vic C, et al. Physical mechanisms driving oxygen subduction in the global ocean[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089040.
    [8]
    Liang Xinfeng, Spall M, Wunsch C. Global ocean vertical velocity from a dynamically consistent ocean state estimate[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8208−8224. doi: 10.1002/2017JC012985
    [9]
    Xie Lingling, Pallàs-Sanz E, Zheng Quanan, et al. Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China[J]. Journal of Physical Oceanography, 2017, 47(4): 755−774. doi: 10.1175/JPO-D-16-0192.1
    [10]
    Chen Ke, Gaube P, Pallàs-Sanz E. On the vertical velocity and nutrient delivery in warm core rings[J]. Journal of Physical Oceanography, 2020, 50(6): 1557−1582. doi: 10.1175/JPO-D-19-0239.1
    [11]
    沈萌, 缪明芳, 王舒瑜, 等. 2018年夏季舟山海域上升流特征及形成机制分析[J]. 厦门大学学报(自然科学版), 2020, 59(S1): 18−23.

    Shen Meng, Miao Mingfang, Wang Shuyu, et al. Analysis of upwelling characteristics and formation mechanism in the Zhoushan coastal region in the summer of 2018[J]. Journal of Xiamen University (Natural Science), 2020, 59(S1): 18−23.
    [12]
    Wang Liju, Xie Lingling, Zheng Quanan, et al. Tropical cyclone enhanced vertical transport in the northwestern South China Sea I: mooring observation analysis for Washi (2005)[J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106599. doi: 10.1016/j.ecss.2020.106599
    [13]
    Legal C, Klein P, Treguier A M, et al. Diagnosis of the vertical motions in a mesoscale stirring region[J]. Journal of Physical Oceanography, 2007, 37(5): 1413−1424. doi: 10.1175/JPO3053.1
    [14]
    Pietri A, Capet X, D’Ovidio F, et al. Skills and limitations of the adiabatic omega equation: how effective is it to retrieve oceanic vertical circulation at mesoscale and submesoscale?[J]. Journal of Physical Oceanography, 2021, 51(3): 931−954. doi: 10.1175/JPO-D-20-0052.1
    [15]
    孙春健, 张晓爽, 张寅权, 等. 卫星遥感重构海洋次表层研究进展[J]. 海洋信息, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004

    Sun Chunjian, Zhang Xiaoshuang, Zhang Yinquan, et al. Progress in reconstruction of ocean subsurface by satellite remote sensing data[J]. Marine Information, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004
    [16]
    Klein P, Isern-Fontanet J, Lapeyre G, et al. Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height[J]. Geophysical Research Letters, 2009, 36(12): L12603. doi: 10.1029/2009GL038359
    [17]
    Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
    [18]
    Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements[J]. Journal of Physical Oceanography, 2016, 46(3): 947−963. doi: 10.1175/JPO-D-15-0188.1
    [19]
    Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55−79. doi: 10.1175/JPO-D-19-0172.1
    [20]
    Liu Lei, Xue Huijie, Sasaki H. Diagnosing subsurface vertical velocities from high-resolution sea surface fields[J]. Journal of Physical Oceanography, 2021, 51(5): 1353−1373. doi: 10.1175/JPO-D-20-0152.1
    [21]
    Isern-Fontanet J, Chapron B, Lapeyre G, et al. Potential use of microwave sea surface temperatures for the estimation of ocean currents[J]. Geophysical Research Letters, 2006, 33(24): L24608. doi: 10.1029/2006GL027801
    [22]
    Ponte A L, Klein P, Capet X, et al. Diagnosing surface mixed layer dynamics from high-resolution satellite observations: numerical insights[J]. Journal of Physical Oceanography, 2013, 43(7): 1345−1355. doi: 10.1175/JPO-D-12-0136.1
    [23]
    Chavanne C P, Klein P. Quasigeostrophic diagnosis of mixed layer dynamics embedded in a mesoscale turbulent field[J]. Journal of Physical Oceanography, 2016, 46(1): 275−287. doi: 10.1175/JPO-D-14-0178.1
    [24]
    郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [25]
    Zheng Quanan, Xie Lingling, Xiong Xuejun, et al. Progress in research of submesoscale processes in the South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(1): 1−13. doi: 10.1007/s13131-019-1521-4
    [26]
    杨潇霄, 曹海锦, 经志友. 南海上层海洋次中尺度过程空间差异和季节变化特征[J]. 热带海洋学报, 2021, 40(5): 10−24. doi: 10.11978/2020116

    Yang Xiaoxiao, Cao Haijin, Jing Zhiyou. Spatial and seasonal differences of the upper-ocean submesoscale processes in the South China Sea[J]. Journal of Tropical Oceanography, 2021, 40(5): 10−24. doi: 10.11978/2020116
    [27]
    张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(12): 1−11.

    Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
    [28]
    Jing Zhiyou, Qi Yiquan, Du Yan, et al. Summer upwelling and thermal fronts in the northwestern South China Sea: observational analysis of two mesoscale mapping surveys[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1993−2006. doi: 10.1002/2014JC010601
    [29]
    黄小龙, 经志友, 郑瑞玺, 等. 南海西部夏季上升流锋面的次中尺度特征分析[J]. 热带海洋学报, 2020, 39(3): 1−9.

    Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Analysis of submesoscale characteristics of summer upwelling fronts in the western South China Sea[J]. Journal of Tropical Oceanography, 2020, 39(3): 1−9.
    [30]
    Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05016.
    [31]
    Lu Wenfang, Yan Xiaohai, Han Lu, et al. One-dimensional ocean model with three types of vertical velocities: a case study in the South China Sea[J]. Ocean Dynamics, 2017, 67(2): 253−262. doi: 10.1007/s10236-016-1029-9
    [32]
    Isern-Fontanet J, Lapeyre G, Klein P, et al. Three-dimensional reconstruction of oceanic mesoscale currents from surface information[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09005.
    [33]
    He Zhigang, Wang Dongxiao, Hu Jianyu. Features of eddy kinetic energy and variations of upper circulation in the South China Sea[J]. Acta Oceanologica Sinica, 2002, 21(2): 305−314.
    [34]
    Cheng Xuhua, Qi Yiquan. Variations of eddy kinetic energy in the South China Sea[J]. Journal of Oceanography, 2010, 66(1): 85−94. doi: 10.1007/s10872-010-0007-y
    [35]
    Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
    [36]
    Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea[J]. Scientific Reports, 2016, 6(1): 24338. doi: 10.1038/srep24338
    [37]
    Zhu Yaohua, Wang Dingqi, Wang Yonggang, et al. Vertical velocity and transport in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(7): 13−25. doi: 10.1007/s13131-021-1954-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (750) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return