Citation: | Li Qianqian,Li Honglin,Cao Shoulian, et al. Inversion of the full-depth sound speed profile based on remote sensing data and surface sound speed[J]. Haiyang Xuebao,2022, 44(12):84–94 doi: 10.12284/hyxb2022149 |
[1] |
宋海润, 叶松, 王晓蕾, 等. 声速剖面仪测量技术综述[J]. 海洋技术学报, 2020, 39(2): 105−112.
Song Hairun, Ye Song, Wang Xiaolei, et al. A review of the measurement techniques of sound velocity profilers[J]. Journal of Ocean Technology, 2020, 39(2): 105−112.
|
[2] |
Li Haipeng, Qu Ke, Zhou Jianbo. Reconstructing sound speed profile from remote sensing data: nonlinear inversion based on self-organizing map[J]. IEEE Access, 2021, 9: 109754−109762. doi: 10.1109/ACCESS.2021.3102608
|
[3] |
Li Hong, Xu Fanghua, Zhou Wei, et al. Development of a global gridded Argo data set with Barnes successive corrections[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 866−889. doi: 10.1002/2016JC012285
|
[4] |
Tolstoy A, Diachok O, Frazer L N. Acoustic tomography via matched field processing[J]. The Journal of the Acoustical Society of America, 1991, 89(3): 1119−1127. doi: 10.1121/1.400647
|
[5] |
沈远海, 马远良, 屠庆平, 等. 浅水声速剖面的反演方法与实验验证[J]. 西北工业大学学报, 2000, 18(2): 212−215. doi: 10.3969/j.issn.1000-2758.2000.02.010
Shen Yuanhai, Ma Yuanliang, Tu Qingping, et al. Inversion of sound speed profile for shallow-water environment with experimental verification[J]. Journal of Northwestern Polytechnical University, 2000, 18(2): 212−215. doi: 10.3969/j.issn.1000-2758.2000.02.010
|
[6] |
Yang T T, Chen Z B, He Y J. A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite[J]. Acta Oceanologica Sinica, 2015, 34(9): 85−93. doi: 10.1007/s13131-015-0735-3
|
[7] |
Hurlburt H E, Fox D N, Metzger E J. Statistical inference of weakly correlated subthermocline fields from satellite altimeter data[J]. Journal of Geophysical Research: Oceans, 1990, 95(C7): 11375−11409. doi: 10.1029/JC095iC07p11375
|
[8] |
Carnes M R, Mitchell J L, de Witt P W. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles[J]. Journal of Geophysical Research: Oceans, 1990, 95(C10): 17979−17992. doi: 10.1029/JC095iC10p17979
|
[9] |
Carnes M R, Teague W J, Mitchell J L. Inference of subsurface thermohaline structure from fields measurable by satellite[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(2): 551−566. doi: 10.1175/1520-0426(1994)011<0551:IOSTSF>2.0.CO;2
|
[10] |
Fox D N, Teague W J, Barron C N, et al. The modular ocean data assimilation system (MODAS)[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 240−252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
|
[11] |
Chen Cheng, Ma Yuanliang, Liu Ying. Reconstructing sound speed profiles worldwide with sea surface data[J]. Applied Ocean Research, 2018, 77: 26−33. doi: 10.1016/j.apor.2018.05.002
|
[12] |
Liu Yonggang, Weisberg R H, Mooers C N K. Performance evaluation of the self-organizing map for feature extraction[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05018.
|
[13] |
Liu Yonggang, Weisberg R H, Shay L K. Current patterns on the West Florida shelf from joint self-organizing map analyses of HF radar and ADCP data[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(4): 702−712. doi: 10.1175/JTECH1999.1
|
[14] |
Charantonis A A, Testor P, Mortier L, et al. Completion of a sparse GLIDER database using multi-iterative self-organizing maps (ITCOMP SOM)[J]. Procedia Computer Science, 2015, 51: 2198−2206. doi: 10.1016/j.procs.2015.05.496
|
[15] |
Chapman C, Charantonis A A. Reconstruction of subsurface velocities from satellite observations using iterative self-organizing maps[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 617−620. doi: 10.1109/LGRS.2017.2665603
|
[16] |
Chen Cheng, Yang Kunde, Ma Yuanliang, et al. Reconstructing the subsurface temperature field by using sea surface data through self-organizing map method[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1812−1816. doi: 10.1109/LGRS.2018.2866237
|
[17] |
Chen Cheng, Yan Fenggang, Gao Ya, et al. Improving reconstruction of sound speed profiles using a self-organizing map method with multi-source observations[J]. Remote Sensing Letters, 2020, 11(6): 572−580. doi: 10.1080/2150704X.2020.1742940
|
[18] |
Jain S, Ali M M. Estimation of sound speed profiles using artificial neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 467−470. doi: 10.1109/LGRS.2006.876221
|
[19] |
Reynolds R W, Smith T M, Liu Chunying, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496. doi: 10.1175/2007JCLI1824.1
|
[20] |
AVISO. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT near-real time and delayed time products[M]. Paris: CNES, 2012.
|
[21] |
Kohonen T. The self-organizing map[J]. Neurocomputing, 1998, 21(1/3): 1−6.
|
[22] |
Chen C T, Millero F J. Speed of sound in seawater at high pressures[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1129−1135. doi: 10.1121/1.381646
|
[23] |
Casagrande G, Stephan Y, Varnas A C W, et al. A novel Empirical Orthogonal Function (EOF)-based methodology to study the internal wave effects on acoustic propagation[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 745−759. doi: 10.1109/JOE.2011.2161158
|