Citation: | Yang Fanlin,Shen Ruijie,Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao,2022, 44(12):126–135 doi: 10.12284/hyxb2022145 |
[1] |
Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world’s oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
|
[2] |
欧阳明达, 孙中苗, 翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9): 2756−2765. doi: 10.6038/cjg20140903
Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. Predicting bathymetry in South China Sea using the gravity-geologic method[J]. Chinese Journal of Geophysics, 2014, 57(9): 2756−2765. doi: 10.6038/cjg20140903
|
[3] |
胡敏章, 李建成, 金涛勇. 应用重力地质方法反演皇帝海山的海底地形[J]. 武汉大学学报·信息科学版, 2012, 37(5): 610−612, 629. doi: 10.13203/j.whugis2012.05.008
Hu Minzhang, Li Jiancheng, Jin Taoyong. Bathymetry inversion with gravity-geologic method in emperor seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 610−612, 629. doi: 10.13203/j.whugis2012.05.008
|
[4] |
Fan Diao, Li Shanshan, Meng Shuyu, et al. Bathymetric prediction from multi-source satellite altimetry gravity data[J]. Journal of Geodesy and Geoinformation Science, 2020, 2(1): 49−58.
|
[5] |
Hwang C. A bathymetric model for the South China Sea from satellite altimetry and depth data[J]. Marine Geodesy, 1999, 22(1): 37−51. doi: 10.1080/014904199273597
|
[6] |
Calmant S, Berge-Nguyen M, Cazenave A. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings[J]. Geophysical Journal International, 2002, 151(3): 795−808. doi: 10.1046/j.1365-246X.2002.01802.x
|
[7] |
Smith W H F, Sandwell D T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21803−21824. doi: 10.1029/94JB00988
|
[8] |
Kim K B, Hsiao Y S, Kim J W, et al. Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4): 285−298. doi: 10.1007/s11001-010-9110-0
|
[9] |
李倩倩, 鲍李峰. 测高重力场反演海底地形方法比较[J]. 海洋测绘, 2016, 36(5): 1−4, 18. doi: 10.3969/j.issn.1671-3044.2016.05.001
Li Qianqian, Bao Lifeng. Comparative analysis of methods for bathymetry prediction from altimeter-derived gravity anomalies[J]. Hydrographic Surveying and Charting, 2016, 36(5): 1−4, 18. doi: 10.3969/j.issn.1671-3044.2016.05.001
|
[10] |
彭聪, 周兴华, 王颖. 两种测高重力异常反演海底地形方法比较[J]. 海洋通报, 2020, 39(2): 223−230.
Peng Cong, Zhou Xinghua, Wang Ying. Comparison of two methods for retrieving sea bottom terrain bathymetry prediction from altimetry gravity anomalies[J]. Marine Science Bulletin, 2020, 39(2): 223−230.
|
[11] |
范雕, 李姗姗, 孟书宇, 等. 不同均衡补偿模式下海底地形反演方法比较分析[J]. 中国惯性技术学报, 2019, 27(1): 51−59.
Fan Diao, Li Shanshan, Meng Shuyu, et al. Comparison and analysis on seafloor topography inversion methods with different isostatic compensation models[J]. Journal of Chinese Inertial Technology, 2019, 27(1): 51−59.
|
[12] |
郭金运, 魏志杰, 祝程程, 等. 基于重力异常迭代延拓的南海海底地形反演[J]. 山东科技大学学报(自然科学版), 2021, 40(4): 1−10.
Guo Jinyun, Wei Zhijie, Zhu Chengcheng, et al. Bathymetry inversion of South China Sea based on iterative continuation of gravity anomalies[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(4): 1−10.
|
[13] |
王虎彪, 肖耀飞, 武凛, 等. 重力数据融合与重力垂直梯度异常反演[J]. 海洋测绘, 2018, 38(1): 1−4, 17. doi: 10.3969/j.issn.1671-3044.2018.01.001
Wang Hubiao, Xiao Yaofei, Wu Lin, et al. The fusion of gravity data and inversion of gravity vertical gradient anomaly[J]. Hydrographic Surveying and Charting, 2018, 38(1): 1−4, 17. doi: 10.3969/j.issn.1671-3044.2018.01.001
|
[14] |
Wan Xiaoyun, Ran Jiangjun, Jin Shuanggen. Sensitivity analysis of gravity anomalies and vertical gravity gradient data for bathymetry inversion[J]. Marine Geophysical Research, 2019, 40(1): 87−96. doi: 10.1007/s11001-018-9361-8
|
[15] |
Wang Yanming. Predicting bathymetry from the Earth’s gravity gradient anomalies[J]. Marine Geodesy, 2000, 23(4): 251−258. doi: 10.1080/01490410050210508
|
[16] |
Wessel P, Lyons S. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22459−22475. doi: 10.1029/97JB01588
|
[17] |
吴云孙, 晁定波, 李建成, 等. 利用测高重力梯度异常反演中国南海海底地形[J]. 武汉大学学报·信息科学版, 2009, 34(12): 1423−1425. doi: 10.13203/j.whugis2009.12.007
Wu Yunsun, Chao Dingbo, Li Jiancheng, et al. Recovery of ocean depth model of South China Sea from altimetric gravity gradient anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423−1425. doi: 10.13203/j.whugis2009.12.007
|
[18] |
胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型[J]. 武汉大学学报·信息科学版, 2015, 40(9): 1266−1273.
Hu Minzhang, Li Jiancheng, Jin Taoyong, et al. Recovery of bathymetry over China Sea and its adjacent areas by combination of multi-source data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1266−1273.
|
[19] |
范雕, 李姗姗, 杨军军, 等. 利用多元回归分析反演西南印度洋区域海底地形[J]. 测绘学报, 2020, 49(2): 147−161. doi: 10.11947/j.AGCS.2020.20180526
Fan Diao, Li Shanshan, Yang Junjun, et al. Predicting bathymetry by applying multiple regression analysis in the Southwest Indian Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 147−161. doi: 10.11947/j.AGCS.2020.20180526
|
[20] |
Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447−455. doi: 10.1111/j.1365-246X.1973.tb06513.x
|
[21] |
Schwarz K P, Sideris M G, Forsberg R. The use of FFT techniques in physical geodesy[J]. Geophysical Journal International, 1990, 100(3): 485−514. doi: 10.1111/j.1365-246X.1990.tb00701.x
|
[22] |
欧阳明达, 孙中苗, 翟振和, 等. 采用重力异常的导纳理论推估海底地形[J]. 测绘学报, 2015, 44(10): 1092−1099. doi: 10.11947/j.AGCS.2015.20140427
Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe, et al. Bathymetry prediction based on the admittance theory of gravity anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1092−1099. doi: 10.11947/j.AGCS.2015.20140427
|
[23] |
韩小慧. 稳健多元线性回归在地理数据处理中的应用[D]. 太原: 太原理工大学, 2012.
Han Xiaohui. Application of robust multiple linear regression in geographic data processing[D]. Taiyuan: Taiyuan University of Technology, 2012.
|
[24] |
Baselga S. Global optimization solution of robust estimation[J]. Journal of Surveying Engineering, 2007, 133(3): 123−128. doi: 10.1061/(ASCE)0733-9453(2007)133:3(123)
|
[25] |
陈艳国. 回归预测模型的稳健性分析[J]. 西部探矿工程, 2006, 18(2): 177−179. doi: 10.3969/j.issn.1004-5716.2006.02.083
Chen Yanguo. Robustness analysis of regression prediction models[J]. West-China Exploration Engineering, 2006, 18(2): 177−179. doi: 10.3969/j.issn.1004-5716.2006.02.083
|
[26] |
范雕, 李姗姗, 孟书宇, 等. 应用抗差估计方法构建日本海海底地形模型[J]. 中国惯性技术学报, 2020, 28(5): 576−585.
Fan Diao, Li Shanshan, Meng Shuyu, et al. Applying robust estimation method to estimate seafloor topography in the Sea of Japan[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 576−585.
|
[27] |
魏志杰. 基于卫星测高数据反演南海海底地形[D]. 青岛: 山东科技大学, 2021.
Wei Zhijie. Bathymetry prediction of the South China Sea based on satellite altimetry data[D]. Qingdao: Shandong University of Science and Technology, 2021.
|
[28] |
范雕, 李姗姗, 孟书宇, 等. 线性回归分析技术推估海底地形[J]. 中国惯性技术学报, 2018, 26(1): 24−32.
Fan Diao, Li Shanshan, Meng Shuyu, et al. Predicting submarine topography by linear regression analysis[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 24−32.
|
[29] |
王永康, 周兴华, 唐秋华, 等. 应用重力地质法反演马里亚纳海沟地形[J]. 海洋科学进展, 2020, 38(4): 708−716. doi: 10.3969/j.issn.1671-6647.2020.04.014
Wang Yongkang, Zhou Xinghua, Tang Qiuhua, et al. Predicting bathymetry in Mariana Trench using gravity-geologic method[J]. Advances in Marine Science, 2020, 38(4): 708−716. doi: 10.3969/j.issn.1671-6647.2020.04.014
|