Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Zhang Yafeng,Hou Minchi,Chen Rong, et al. Researches on regulatory mechanism of algal bloom size structure in eutrophic estuarine water[J]. Haiyang Xuebao,2022, 44(8):142–150 doi: 10.12284/hyxb2022142
Citation: Zhang Yafeng,Hou Minchi,Chen Rong, et al. Researches on regulatory mechanism of algal bloom size structure in eutrophic estuarine water[J]. Haiyang Xuebao,2022, 44(8):142–150 doi: 10.12284/hyxb2022142

Researches on regulatory mechanism of algal bloom size structure in eutrophic estuarine water

doi: 10.12284/hyxb2022142
  • Received Date: 2021-11-15
  • Rev Recd Date: 2022-03-08
  • Available Online: 2022-08-15
  • Publish Date: 2022-08-15
  • In order to examine the regulatory mechanism of size structure of algal blooms in eutrophic estuarine waters, we used river water, sea water and their mixed water in Zhujiang River Estuary during dry season and conducted incubation experiments to examine changes of nutrients and chlorophyll a (Chl a) concentrations. Algal growth rate (μ) and microzooplankton grazing rate (m) were estimated by dilution experiments to examine the effects of bottom-up (nutrients stimulation) and top-down control (microzooplankton grazing) on size structure of algal blooms. We found that nutrient additions increased the peak of Chl a concentration, and phytoplankton community dominance changed from picophytoplankton and nanophytoplankton to microphytoplankton. Generally, μ kept high in the first 2 to 3 days and then declined (1.13±0.37) per day in nutrient added river water; μ kept increasing (1.06±0.16) per day in nutrient added sea water and slightly fluctuated (0.58±0.14) per day in nutrient added mixed water with microphytoplankton having the highest μ. In contrast, m increased in the first 2 days or 3 days and then decreased, and there were no size differences in all treatments. The microzooplankton grazing vs algal growth (m/μ) increased from microphytoplankton, nanophytoplankton, to picophytoplankton, indicating that larger size phytoplankton were under less top-down control. In addition, m/μ increased as daily algal specific growth rate decreased, indicating that bottom-up control played a stimulating role at early stage, and the top-down control played a more important role in the late stage of algal blooms. This study suggests that eutrophication can make a difference in both the magnitudes and size structure of algal blooms in estuarine waters.
  • loading
  • [1]
    Strom S. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea[J]. Hydrobiologia, 2002, 480(1/3): 41−54. doi: 10.1023/A:1021224832646
    [2]
    Kirchman D L. Growth rates of microbes in the oceans[J]. Annual Review of Marine Science, 2016, 8: 285−309. doi: 10.1146/annurev-marine-122414-033938
    [3]
    Huang Bangqin, Xiang Weiguo, Zeng Xiangbo, et al. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6): S48−S56. doi: 10.1016/j.csr.2011.02.005
    [4]
    Strom S L, Fredrickson K A. Intense stratification leads to phytoplankton nutrient limitation and reduced microzooplankton grazing in the southeastern Bering Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(16/17): 1761−1774.
    [5]
    Sun Jun, Feng Yuanyuan, Zhang Yaohong, et al. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay[J]. Hydrobiologia, 2007, 589(1): 127−139. doi: 10.1007/s10750-007-0730-6
    [6]
    Froneman P W, McQuaid C D. Preliminary investigation of the ecological role of microzooplankton in the Kariega Estuary, South Africa[J]. Estuarine, Coastal and Shelf Science, 1997, 45(5): 689−695. doi: 10.1006/ecss.1996.0225
    [7]
    Strom S L, Brainard M A, Holmes J L, et al. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters[J]. Marine Biology, 2001, 138(2): 355−368. doi: 10.1007/s002270000461
    [8]
    Zhou L, Tan Y, Huang L, et al. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon[J]. Biogeosciences, 2015, 12(22): 6809−6822. doi: 10.5194/bg-12-6809-2015
    [9]
    Lie A A Y, Wong C K. Selectivity and grazing impact of microzooplankton on phytoplankton in two subtropical semi-enclosed bays with different chlorophyll concentrations[J]. Journal of Experimental Marine Biology and Ecology, 2010, 390(2): 149−159. doi: 10.1016/j.jembe.2010.05.001
    [10]
    Liu Xiangjiang, Tang C H, Wong C K. Microzooplankton grazing and selective feeding during bloom periods in the Tolo Harbour area as revealed by HPLC pigment analysis[J]. Journal of Sea Research, 2014, 90: 83−94. doi: 10.1016/j.seares.2014.02.017
    [11]
    Lehrter J C, Pennock J R, McManus G B. Microzooplankton grazing and nitrogen excretion across a surface estuarine-coastal interface[J]. Estuaries, 1999, 22(1): 113−125. doi: 10.2307/1352932
    [12]
    Sun Jun, Feng Yuanyuan, Zhou Feng, et al. Top-down control of spring surface phytoplankton blooms by microzooplankton in the central Yellow Sea, China[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 97: 51−60. doi: 10.1016/j.dsr2.2013.05.005
    [13]
    Grattepanche J D, Vincent D, Breton E, et al. Microzooplankton herbivory during the diatom—Phaeocystis spring succession in the eastern English Channel[J]. Journal of Experimental Marine Biology and Ecology, 2011, 404(1/2): 87−97.
    [14]
    Tsuda A, Saito H, Machida R J, et al. Meso- and microzooplankton responses to an in situ iron fertilization experiment (SEEDS II) in the northwest subarctic Pacific[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(26): 2767−2778. doi: 10.1016/j.dsr2.2009.06.004
    [15]
    Fileman E S, Leakey R J G. Microzooplankton dynamics during the development of the spring bloom in the north-east Atlantic[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(4): 741−753. doi: 10.1017/S0025315405011653
    [16]
    George J A, Lonsdale D J, Merlo L R, et al. The interactive roles of temperature, nutrients, and zooplankton grazing in controlling the winter-spring phytoplankton bloom in a temperate, coastal ecosystem, Long Island Sound[J]. Limnology and Oceanography, 2015, 60(1): 110−126. doi: 10.1002/lno.10020
    [17]
    Behrenfeld M J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms[J]. Ecology, 2010, 91(4): 977−989. doi: 10.1890/09-1207.1
    [18]
    Lucas L V, Koseff J R, Monismith S G, et al. Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport[J]. Marine Ecology Progress Series, 1999, 187: 17−30. doi: 10.3354/meps187017
    [19]
    张景平, 黄小平, 江志坚, 等. 2006−2007年珠江口富营养化水平的季节性变化及其与环境因子的关系[J]. 海洋学报, 2009, 31(3): 113−120.

    Zhang Jingping, Huang Xiaoping, Jiang Zhijian, et al. Seasonal variations of eutrophication and the relationship with environmental factors in the Zhujiang Estuary in 2006−2007[J]. Haiyang Xuebao, 2009, 31(3): 113−120.
    [20]
    曾丹娜, 牛丽霞, 陶伟, 等. 夏季珠江口水域营养盐分布特征及其富营养化评价[J]. 广东海洋大学学报, 2020, 40(3): 73−82. doi: 10.3969/j.issn.1673-9159.2020.03.010

    Zeng Danna, Niu Lixia, Tao Wei, et al. Nutrient dynamics in Pearl River Estuary and their eutrophication evaluation[J]. Journal of Guangdong Ocean University, 2020, 40(3): 73−82. doi: 10.3969/j.issn.1673-9159.2020.03.010
    [21]
    苏芯莹, 钟瑜, 李尧, 等. 珠江口典型海岛周边水域浮游植物分布特征及其影响因素[J]. 热带海洋学报, 2020, 39(5): 30−42.

    Su Xinying, Zhong Yu, Li Yao, et al. Distribution characteristics and influencing factors of phytoplankton in waters around typical islands in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 2020, 39(5): 30−42.
    [22]
    Yin Kedong. Influence of monsoons and oceanographic processes on red tides in Hong Kong waters[J]. Marine Ecology Progress Series, 2003, 262: 27−41. doi: 10.3354/meps262027
    [23]
    林凤翱, 关春江, 卢兴旺. 近年来全国赤潮监控工作的成效以及存在问题与建议[J]. 海洋环境科学, 2010, 29(1): 148−151. doi: 10.3969/j.issn.1007-6336.2010.01.033

    Lin Feng’ao, Guan Chunjiang, Lu Xingwang. Effects of red tide events monitoring, existence questions and suggestions in coastal areas in recent years in China[J]. Marine Environmental Science, 2010, 29(1): 148−151. doi: 10.3969/j.issn.1007-6336.2010.01.033
    [24]
    田媛, 李涛, 胡思敏, 等. 广东省沿岸海域藻华发生的时空特征[J]. 海洋环境科学, 2020, 39(1): 1−8. doi: 10.12111/j.mes20200101

    Tian Yuan, Li Tao, Hu Simin, et al. Temporal and spatial characteristics of harmful algal blooms in Guangdong coastal area[J]. Marine Environmental Science, 2020, 39(1): 1−8. doi: 10.12111/j.mes20200101
    [25]
    Yin Kedong, Song Xiuxian, Sun Jun, et al. Potential P limitation leads to excess N in the Pearl River Estuarine coastal plume[J]. Continental Shelf Research, 2004, 24(16): 1895−1907. doi: 10.1016/j.csr.2004.06.014
    [26]
    柯志新, 谭烨辉, 黄良民, 等. 2009年秋季旋沟藻赤潮爆发期间珠江口表层水体的环境特征[J]. 海洋环境科学, 2012, 31(5): 635−638.

    Ke Zhixin, Tan Yehui, Huang Liangmin, et al. Environmental characteristics in surface water of the Zhujiang Estuary during the period of Cochlodinium blooms in fall, 2009[J]. Marine Environmental Science, 2012, 31(5): 635−638.
    [27]
    Lu Zhongming, Gan Jianping. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 86−96. doi: 10.1016/j.dsr2.2013.12.011
    [28]
    Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton[J]. Marine Biology, 1982, 67(3): 283−288. doi: 10.1007/BF00397668
    [29]
    Chen B, Zheng L, Huang B, et al. Seasonal and spatial comparisons of phytoplankton growth and mortality rates due to microzooplankton grazing in the northern South China Sea[J]. Biogeosciences, 2013, 10(4): 2775−2785. doi: 10.5194/bg-10-2775-2013
    [30]
    Knap A H, Michaels A, Close A R, et al. Protocols for the joint global ocean flux study (JGOFS) core measurements[R]. Paris: UNESCO-IOC, 1994: 19.
    [31]
    孙军, 宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939−945. doi: 10.3321/j.issn:1001-8166.2005.09.003

    Sun Jun, Ning Xiuren. Marine phytoplankton specific growth rate[J]. Advances in Earth Science, 2005, 20(9): 939−945. doi: 10.3321/j.issn:1001-8166.2005.09.003
    [32]
    Boss E, Behrenfeld M. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom[J]. Geophysical Research Letters, 2010, 37(18): L18603.
    [33]
    Johansson M, Gorokhova E, Larsson U. Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper[J]. Journal of Plankton Research, 2004, 26(1): 67−80. doi: 10.1093/plankt/fbg115
    [34]
    Marañón E. Cell size as a key determinant of phytoplankton metabolism and community structure[J]. Annual Review of Marine Science, 2015, 7: 241−264. doi: 10.1146/annurev-marine-010814-015955
    [35]
    张亚锋, 王旭涛, 殷克东. 南海台风引发藻华的生物机制[J]. 生态学报, 2018, 38(16): 5667−5678.

    Zhang Yafeng, Wang Xutao, Yin Kedong. Biological mechanisms of typhoon-induced blooms in the South China Sea[J]. Acta Ecologica Sinica, 2018, 38(16): 5667−5678.
    [36]
    Irigoien X, Flynn K J, Harris R P. Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact?[J]. Journal of Plankton Research, 2005, 27(4): 313−321. doi: 10.1093/plankt/fbi011
    [37]
    Calbet A, Landry M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems[J]. Limnology and Oceanography, 2004, 49(1): 51−57. doi: 10.4319/lo.2004.49.1.0051
    [38]
    Schmoker C, Hernández-León S, Calbet A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions[J]. Journal of Plankton Research, 2013, 35(4): 691−706. doi: 10.1093/plankt/fbt023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (398) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return