Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Zhao Jing,Jia Chenzheng,Wang Kai, et al. Progress and prospect of bacterial membrane vesicles in marine ecosystem[J]. Haiyang Xuebao,2022, 44(4):1–11 doi: 10.12284/hyxb2022140
Citation: Zhao Jing,Jia Chenzheng,Wang Kai, et al. Progress and prospect of bacterial membrane vesicles in marine ecosystem[J]. Haiyang Xuebao,2022, 44(4):1–11 doi: 10.12284/hyxb2022140

Progress and prospect of bacterial membrane vesicles in marine ecosystem

doi: 10.12284/hyxb2022140
  • Received Date: 2021-12-13
  • Rev Recd Date: 2022-02-24
  • Publish Date: 2022-04-14
  • Bacterial membrane vesicles (MVs), which are a kind of biological nanoparticles carrying proteins, nucleic acids, signaling molecules, and other important compounds, are involved in a variety of physiological and biochemical processes, such as horizontal gene transfer, quorum sensing, biofilm formation and so on. Studies showed that marine extracellular vesicles might be the third largest biological entity except for phages and bacteria. Besides, MVs-mediated intercellular communication across species could be of great significance to marine ecosystems. However, very little is known about the specific ecological role and biological function of MVs in the marine biosphere. In this review, we discuss the role of bacterial MVs in marine micro-ecology, marine symbiotic system, and the impact of MVs-mediated material delivery on marine ecosystem. Meanwhile, we also put forward some questions and opinions for study in marine bacterial MVs’ research.
  • loading
  • [1]
    Darwin C R. The Variation of Animals and Plants under Domestication[M]. Landon: John Murray, 1868.
    [2]
    Chatterjee S N, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae[J]. Journal of General Microbiology, 1967, 49(1): 1−11. doi: 10.1099/00221287-49-1-1
    [3]
    Knox K W, Vesk M, Work E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli[J]. Journal of Bacteriology, 1966, 92(4): 1206−1217. doi: 10.1128/jb.92.4.1206-1217.1966
    [4]
    DeVoe I W, Gilchrist J E. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease[J]. Journal of Experimental Medicine, 1975, 141(2): 297−305. doi: 10.1084/jem.141.2.297
    [5]
    Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007, 9(6): 654−659. doi: 10.1038/ncb1596
    [6]
    Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977
    [7]
    Roier S, Zingl F G, Cakar F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nature Communications, 2016, 7: 10515. doi: 10.1038/ncomms10515
    [8]
    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13−24. doi: 10.1038/s41579-018-0112-2
    [9]
    Furuyama N, Sircili M P. Outer membrane vesicles (OMVs) produced by Gram-negative bacteria: structure, functions, biogenesis, and vaccine application[J]. BioMed Research International, 2021, 2021: 1490732.
    [10]
    Florez C, Raab J E, Cooke A C, et al. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa[J]. mBio, 2017, 8(4): e01034−17.
    [11]
    Schwechheimer C, Kulp A, Kuehn M J. Modulation of bacterial outer membrane vesicle production by envelope structure and content[J]. BMC Microbiology, 2014, 14: 324. doi: 10.1186/s12866-014-0324-1
    [12]
    Tashiro Y, Sakai R, Toyofuku M, et al. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2009, 191(24): 7509−7519. doi: 10.1128/JB.00722-09
    [13]
    Schertzer J W, Whiteley M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis[J]. mBio, 2012, 3(2): e00297−11.
    [14]
    Hayashi J, Hamada N, Kuramitsu H K. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release[J]. FEMS Microbiology Letters, 2002, 216(2): 217−222. doi: 10.1111/j.1574-6968.2002.tb11438.x
    [15]
    Turnbull L, Toyofuku M, Hynen A L, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms[J]. Nature Communications, 2016, 7: 11220. doi: 10.1038/ncomms11220
    [16]
    Brown L, Wolf J M, Prados-Rosales R, et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi[J]. Nature Reviews Microbiology, 2015, 13(10): 620−630. doi: 10.1038/nrmicro3480
    [17]
    Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis[J]. Nature Communications, 2017, 8(1): 481. doi: 10.1038/s41467-017-00492-w
    [18]
    Altindis E, Fu Yang, Mekalanos J J. Proteomic analysis of Vibrio cholerae outer membrane vesicles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): E1548−E1556.
    [19]
    Zingl F G, Thapa H B, Scharf M, et al. Outer membrane vesicles of Vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake[J]. mBio, 2021, 12(3): e00534−21.
    [20]
    Lin Jinshui, Zhang Weipeng, Cheng Juanli, et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition[J]. Nature Communications, 2017, 8: 14888. doi: 10.1038/ncomms14888
    [21]
    Prados-Rosales R, Weinrick B C, Piqué D G, et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition[J]. Journal of Bacteriology, 2014, 196(6): 1250−1256. doi: 10.1128/JB.01090-13
    [22]
    Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. Journal of Bacteriology, 2019, 201(7): e00430−18.
    [23]
    Yaron S M, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157: H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10): 4414−4420. doi: 10.1128/AEM.66.10.4414-4420.2000
    [24]
    Schaefer A L, Taylor T A, Beatty J T, et al. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production[J]. Journal of Bacteriology, 2002, 184(23): 6515−6521. doi: 10.1128/JB.184.23.6515-6521.2002
    [25]
    Bielig H, Dongre M, Zurek B, et al. A role for quorum sensing in regulating innate immune responses mediated by Vibrio cholerae outer membrane vesicles (OMVs)[J]. Gut Microbes, 2011, 2(5): 274−279. doi: 10.4161/gmic.2.5.18091
    [26]
    Schooling S R, Hubley A, Beveridge T J. Interactions of DNA with biofilm-derived membrane vesicles[J]. Journal of Bacteriology, 2009, 191(13): 4097−4102. doi: 10.1128/JB.00717-08
    [27]
    Yonezawa H, Osaki T, Kurata S, et al. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation[J]. BMC Microbiology, 2009, 9: 197. doi: 10.1186/1471-2180-9-197
    [28]
    Biller S J, Schubotz F, Roggensack S E, et al. Bacterial vesicles in marine ecosystems[J]. Science, 2014, 343(6167): 183−186. doi: 10.1126/science.1243457
    [29]
    Manning A J, Kuehn M J. Contribution of bacterial outer membrane vesicles to innate bacterial defense[J]. BMC Microbiology, 2011, 11: 258. doi: 10.1186/1471-2180-11-258
    [30]
    Li Jie, Azam F, Zhang Si. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogen Vibrio shilonii AK1[J]. Environmental Microbiology, 2016, 18(11): 3850−3866. doi: 10.1111/1462-2920.13344
    [31]
    MacDonald I A, Kuehn M J. Offense and defense: microbial membrane vesicles play both ways[J]. Research in Microbiology, 2012, 163(9/10): 607−618.
    [32]
    Schatz D, Rosenwasser S, Malitsky S, et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga[J]. Nature Microbiology, 2017, 2(11): 1485−1492. doi: 10.1038/s41564-017-0024-3
    [33]
    Alegado R A, Brown L W, Cao Shugeng, et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals[J]. eLife, 2012, 1: e00013. doi: 10.7554/eLife.00013
    [34]
    Woznica A, Cantley A M, Beemelmanns C, et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7894−7899. doi: 10.1073/pnas.1605015113
    [35]
    Ireland E V, Woznica A, King N. Synergistic cues from diverse bacteria enhance multicellular development in a choanoflagellate[J]. Applied and Environmental Microbiology, 2020, 86(11): e02920−19.
    [36]
    Li Mingyu, Wang Kai, Jia Chenzheng, et al. Bacteroidetes bacteria, important players in the marine sponge larval development process[J]. iScience, 2021, 24(6): 102662. doi: 10.1016/j.isci.2021.102662
    [37]
    Guo Huijuan, Rischer M, Westermann M, et al. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata[J]. mBio, 2021, 12(3): e00401−21.
    [38]
    Freckelton M L, Nedved B T, Hadfield M G. Induction of invertebrate larval settlement; different bacteria, different mechanisms?[J]. Scientific Reports, 2017, 7: 42557. doi: 10.1038/srep42557
    [39]
    Lynch J B, Schwartzman J A, Bennett B D, et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis[J]. Journal of Bacteriology, 2019, 201(20): e00319−19.
    [40]
    Lynch J B, Alegado R A. Spheres of hope, packets of doom: the good and bad of outer membrane vesicles in interspecies and ecological dynamics[J]. Journal of Bacteriology, 2017, 199(15): e00012−17.
    [41]
    Brameyer S, Plener L, Müller A, et al. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells[J]. Journal of Bacteriology, 2018, 200(15): e00740−17.
    [42]
    Naval P, Chandra T S. Characterization of membrane vesicles secreted by seaweed associated bacterium Alteromonas macleodii KS62[J]. Biochemical and Biophysical Research Communications, 2019, 514(2): 422−427. doi: 10.1016/j.bbrc.2019.04.148
    [43]
    Harvey H, Bondy-Denomy J, Marquis H, et al. Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation[J]. Nature Microbiology, 2018, 3(1): 47−52. doi: 10.1038/s41564-017-0061-y
    [44]
    Seed K D, Yen M, Shapiro B J, et al. Evolutionary consequences of intra-patient phage predation on microbial populations[J]. eLife, 2014, 3: e03497. doi: 10.7554/eLife.03497
    [45]
    Loenen W A M, Dryden D T F, Raleigh E A, et al. Highlights of the DNA cutters: a short history of the restriction enzymes[J]. Nucleic Acids Research, 2014, 42(1): 3−19. doi: 10.1093/nar/gkt990
    [46]
    Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709−1712. doi: 10.1126/science.1138140
    [47]
    Chopin M C, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme[J]. Current Opinion in Microbiology, 2005, 8(4): 473−479. doi: 10.1016/j.mib.2005.06.006
    [48]
    Wang Shiwei, Wan Mengping, Huang Ruolin, et al. SspABCD-SspFGH constitutes a new type of DNA phosphorothioate-based bacterial defense system[J]. mBio, 2021, 12(2): e00613−21.
    [49]
    Reyes-Robles T, Dillard R S, Cairns L S, et al. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection[J]. Journal of Bacteriology, 2018, 200(15): e00792−17.
    [50]
    Suttle C A. Marine viruses—major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801−812. doi: 10.1038/nrmicro1750
    [51]
    Wommack K E, Colwell R R. Virioplankton: viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 69−114. doi: 10.1128/MMBR.64.1.69-114.2000
    [52]
    Loeb M R, Kilner J. Release of a special fraction of the outer membrane from both growing and phage T4-infected Escherichia coli B[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1978, 514(1): 117−127. doi: 10.1016/0005-2736(78)90081-0
    [53]
    Gaudin M, Krupovic M, Marguet E, et al. Extracellular membrane vesicles harbouring viral genomes[J]. Environmental Microbiology, 2014, 16(4): 1167−1175. doi: 10.1111/1462-2920.12235
    [54]
    Kharina A, Podolich O, Faidiuk I, et al. Temperate bacteriophages collected by outer membrane vesicles in Komagataeibacter intermedius[J]. Journal of Basic Microbiology, 2015, 55(4): 509−513. doi: 10.1002/jobm.201400711
    [55]
    Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors[J]. Cell, 2017, 168(1/2): 186−199.e12.
    [56]
    Hassanpour M, Rezaie J, Nouri M, et al. The role of extracellular vesicles in COVID-19 virus infection[J]. Infection, Genetics and Evolution, 2020, 85: 104422. doi: 10.1016/j.meegid.2020.104422
    [57]
    Konadu K A, Chu J, Huang M B, et al. Association of cytokines with exosomes in the plasma of HIV-1-seropositive individuals[J]. The Journal of Infectious Diseases, 2015, 211(11): 1712−1716. doi: 10.1093/infdis/jiu676
    [58]
    Raab-Traub N, Dittmer D P. Viral effects on the content and function of extracellular vesicles[J]. Nature Reviews Microbiology, 2017, 15(9): 559−572. doi: 10.1038/nrmicro.2017.60
    [59]
    Toledo A, Coleman J L, Kuhlow C J, et al. The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles[J]. Infection and Immunity, 2012, 80(1): 359−368. doi: 10.1128/IAI.05836-11
    [60]
    Evans A G L, Davey H M, Cookson A, et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo[J]. Microbiology, 2012, 158(11): 2742−2752. doi: 10.1099/mic.0.060343-0
    [61]
    Vasilyeva N V, Tsfasman I M, Suzina N E, et al. Secretion of bacteriolytic endopeptidase l5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles[J]. The FEBS Journal, 2008, 275(15): 3827−3835. doi: 10.1111/j.1742-4658.2008.06530.x
    [62]
    Zengler K, Zaramela L S. The social network of microorganisms—how auxotrophies shape complex communities[J]. Nature Reviews Microbiology, 2018, 16(6): 383−390. doi: 10.1038/s41579-018-0004-5
    [63]
    Schatz D, Vardi A. Extracellular vesicles—new players in cell-cell communication in aquatic environments[J]. Current Opinion in Microbiology, 2018, 43: 148−154. doi: 10.1016/j.mib.2018.01.014
    [64]
    Zehr J P, Weitz J S, Joint I. How microbes survive in the open ocean[J]. Science, 2017, 357(6352): 646−647. doi: 10.1126/science.aan5764
    [65]
    Dürwald A, Zühlke M K, Schlüter R, et al. Reaching out in anticipation: Bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization[J]. Environmental Microbiology, 2021, 23(6): 3149−3163. doi: 10.1111/1462-2920.15537
    [66]
    Fischer T, Schorb M, Reintjes G, et al. Biopearling of interconnected outer membrane vesicle chains by a marine flavobacterium[J]. Applied and Environmental Microbiology, 2019, 85(19): e00829−19.
    [67]
    Pérez-Cruz C, Carrión O, Delgado L, et al. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content[J]. Applied and Environmental Microbiology, 2013, 79(6): 1874−1881. doi: 10.1128/AEM.03657-12
    [68]
    Nevot M, Deroncelé V, Messner P, et al. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3[J]. Environmental Microbiology, 2006, 8(9): 1523−1533. doi: 10.1111/j.1462-2920.2006.01043.x
    [69]
    Ireland M M E, Karty J A, Quardokus E M, et al. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake[J]. Molecular Microbiology, 2002, 45(4): 1029−1041. doi: 10.1046/j.1365-2958.2002.03071.x
    [70]
    Chiura H X, Kogure K, Hagemann S, et al. Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria[J]. FEMS Microbiology Ecology, 2011, 76(3): 576−591. doi: 10.1111/j.1574-6941.2011.01077.x
    [71]
    Lengeler J W, Drews G, Schlegel H G. Biology of the Prokaryotes[M]. Stuttgart: Georg Thieme Verlag, 1998.
    [72]
    Dorward D W, Garon C F, Judd R C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1989, 171(5): 2499−2505. doi: 10.1128/jb.171.5.2499-2505.1989
    [73]
    Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2201−2207. doi: 10.1093/jac/dkx131
    [74]
    Klieve A V, Yokoyama M T, Forster R J, et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin[J]. Applied and Environmental Microbiology, 2005, 71(8): 4248−4253. doi: 10.1128/AEM.71.8.4248-4253.2005
    [75]
    Domingues S, Nielsen K M. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Current Opinion in Microbiology, 2017, 38: 16−21. doi: 10.1016/j.mib.2017.03.012
    [76]
    Biller S J, McDaniel L D, Breitbart M, et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates[J]. The ISME Journal, 2017, 11(2): 394−404. doi: 10.1038/ismej.2016.134
    [77]
    Soler N, Marguet E, Verbavatz J M, et al. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales[J]. Research in Microbiology, 2008, 159(5): 390−399. doi: 10.1016/j.resmic.2008.04.015
    [78]
    Gaudin M, Gauliard E, Schouten S, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA[J]. Environmental Microbiology Reports, 2013, 5(1): 109−116. doi: 10.1111/j.1758-2229.2012.00348.x
    [79]
    Erdmann S, Tschitschko B, Zhong Ling, et al. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells[J]. Nature Microbiology, 2017, 2(10): 1446−1455. doi: 10.1038/s41564-017-0009-2
    [80]
    Kwon Y M, Patra A K, Chiura H X, et al. Production of extracellular vesicles with light-induced proton pump activity by proteorhodopsin-containing marine bacteria[J]. MicrobiologyOpen, 2019, 8(8): e00808.
    [81]
    Lee J, Zhang Lianhui. The hierarchy quorum sensing network in Pseudomonas aeruginosa[J]. Protein & Cell, 2015, 6(1): 26−41.
    [82]
    Drees B, Reiger M, Jung K, et al. A modular view of the diversity of cell-density-encoding schemes in bacterial quorum-sensing systems[J]. Biophysical Journal, 2014, 107(1): 266−277. doi: 10.1016/j.bpj.2014.05.031
    [83]
    Mashburn L M, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057): 422−425. doi: 10.1038/nature03925
    [84]
    Toyofuku M, Morinaga K, Hashimoto Y, et al. Membrane vesicle-mediated bacterial communication[J]. The ISME Journal, 2017, 11(6): 1504−1509. doi: 10.1038/ismej.2017.13
    [85]
    Chung H, Pamp S J, Hill J A, et al. Gut immune maturation depends on colonization with a host-specific microbiota[J]. Cell, 2012, 149(7): 1578−1593. doi: 10.1016/j.cell.2012.04.037
    [86]
    Ñahui Palomino R A, Vanpouille C, Laghi L, et al. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues[J]. Nature Communications, 2019, 10(1): 5656. doi: 10.1038/s41467-019-13468-9
    [87]
    Chu H, Khosravi A, Kusumawardhani I P, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease[J]. Science, 2016, 352(6289): 1116−1120. doi: 10.1126/science.aad9948
    [88]
    Deo P, Chow S H, Han Meiling, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation[J]. Nature Microbiology, 2020, 5(11): 1418−1427. doi: 10.1038/s41564-020-0773-2
    [89]
    Apprill A. The role of symbioses in the adaptation and stress responses of marine organisms[J]. Annual Review of Marine Science, 2020, 12: 291−314. doi: 10.1146/annurev-marine-010419-010641
    [90]
    Laanto E, Penttinen R K, Bamford J K H, et al. Comparing the different morphotypes of a fish pathogen-implications for key virulence factors in Flavobacterium columnare[J]. BMC Microbiology, 2014, 14: 170. doi: 10.1186/1471-2180-14-170
    [91]
    Wen Ying, Chen Shouwen, Jiang Zhiwei, et al. Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish[J]. Cellular Microbiology, 2019, 21(6): e13010. doi: 10.1111/cmi.13010
    [92]
    Vanhove A S, Duperthuy M, Charrière G M, et al. Outer membrane vesicles are vehicles for the delivery of Vibrio tasmaniensis virulence factors to oyster immune cells[J]. Environmental Microbiology, 2015, 17(4): 1152−1165. doi: 10.1111/1462-2920.12535
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (686) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return