Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Hu Yuan,Yuan Xintai,Liu Wei, et al. GNSS-R sea level height estimation model based on the combination of VMD and WinLSP[J]. Haiyang Xuebao,2022, 44(11):170–178 doi: 10.12284/hyxb2022139
Citation: Hu Yuan,Yuan Xintai,Liu Wei, et al. GNSS-R sea level height estimation model based on the combination of VMD and WinLSP[J]. Haiyang Xuebao,2022, 44(11):170–178 doi: 10.12284/hyxb2022139

GNSS-R sea level height estimation model based on the combination of VMD and WinLSP

doi: 10.12284/hyxb2022139
  • Received Date: 2021-09-11
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-08-02
  • Publish Date: 2022-11-03
  • Global navigation satellite system-reflectometry (GNSS-R) technology is an emerging technology for monitoring sea level changes. Based on the principle of the signal to noise ratio (SNR) analysis method in GNSS-R technology, this paper established a new sea level height estimation model to improve the accuracy by analyzing the process of separating the trend term and extracting the oscillation frequency. Aiming at the problem of poor signal separation in the traditional model, this paper proposed to use the variational mode decomposition (VMD) algorithm to replace the traditional least squares fitting (LSF) to separate the trend term components. On this basis, this paper combined Lomb-Scargle Periodogram (LSP) spectral analysis method and Kaiser window function (referred to as WinLSP) to reduce the inversion error caused by spectral leakage. The results of sea level inversion experiments carried out at GTGU Station in Onsala, Sweden and SC02 Station in Alaska, USA show that the estimation model established in this paper has higher inversion accuracy than traditional model. The root mean square error (RMSE), correlation coefficient and number of inversion points of the inversion results of GTGU Station based on the VMD+WinLSP estimation model are 4.70 cm, 0.98 and 5 647, respectively. The inversion accuracy and GNSS data utilization are increased by about 29.7% and 15.0%, respectively; The RMSE, correlation coefficient, and inversion points of SC02 Station are14.34 cm, 0.99 and 1 785, respectively, and the inversion accuracy and GNSS data utilization are increased by about 12.3 % and 9.4%.
  • loading
  • [1]
    Bindoff N L, Willebrand J, Artale V, et al. Observations: oceanic climate change and sea level[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 385−433.
    [2]
    Martín-Neira M, Caparrini M, Font-Rossello J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 142−150. doi: 10.1109/36.898676
    [3]
    Yoshihara T, Saito S, Fujii N, et al. A study on detection of sea level variation using GPS signal reflected by sea surface[C]//Proceedings of the 2006 National Technical Meeting of The Institute of Navigation. Monterey: ION, 2006: 217−223.
    [4]
    张勇, 符养, 李烨, 等. 一种新型星载GNSS-R系统的地面验证实验[J]. 海洋测绘, 2013, 33(1): 18−21, 25. doi: 10.3969/j.issn.1671-3044.2013.01.006

    Zhang Yong, Fu Yang, Li Ye, et al. A ground experiment to demonstrate a new satellite-based GNSS-R system[J]. Hydrographic Surveying and Charting, 2013, 33(1): 18−21, 25. doi: 10.3969/j.issn.1671-3044.2013.01.006
    [5]
    Zhang Yun, Tian Luman, Meng Wanting, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130−4140. doi: 10.1109/JSTARS.2015.2446684
    [6]
    Treuhaft R N, Lowe S T, Zuffada C, et al. 2-cm GPS altimetry over Crater Lake[J]. Geophysical Research Letters, 2001, 28(23): 4343−4346. doi: 10.1029/2001GL013815
    [7]
    姚彦鑫, 杨东凯, 张其善. 利用GNSS反射信号载波测量湖面高度变化[J]. 北京航空航天大学学报, 2009, 35(9): 1072−1075. doi: 10.13700/j.bh.1001-5965.2009.09.002

    Yao Yanxin, Yang Dongkai, Zhang Qishan. Lake height variation measurement utilizing GNSS reflected signal carrier phase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1072−1075. doi: 10.13700/j.bh.1001-5965.2009.09.002
    [8]
    Löfgren J S, Haas R, Johansson J M. Monitoring coastal sea level using reflected GNSS signals[J]. Advances in Space Research, 2011, 47(2): 213−220. doi: 10.1016/j.asr.2010.08.015
    [9]
    Zhang Yun, Li Binbin, Tian Luman, et al. Phase altimetry using reflected signals from BeiDou GEO satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1410−1414. doi: 10.1109/LGRS.2016.2578361
    [10]
    Hu Yuan, Yuan Xintai, Liu Wei, et al. GNSS-IR model of sea level height estimation combining variational mode decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10405−10414. doi: 10.1109/JSTARS.2021.3118398
    [11]
    胡媛, 袁鑫泰, 陈行杨, 等. 小波变换和改进Burg算法的GNSS-IR海面高度反演模型[J]. 大地测量与地球动力学, 2022, 42(1): 21−24, 53. doi: 10.14075/j.jgg.2022.01.005

    Hu Yuan, Yuan Xintai, Chen Xingyang, et al. GNSS-IR model of sea level altimetry inversion combining wavelet transform with improved burg algorithm[J]. Journal of Geodesy and Geodynamics, 2022, 42(1): 21−24, 53. doi: 10.14075/j.jgg.2022.01.005
    [12]
    Larson K M, Ray R D, Nievinski F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200−1204. doi: 10.1109/LGRS.2012.2236075
    [13]
    Löfgren J S, Haas R, Scherneck H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of Geodynamics, 2014, 80: 66−80. doi: 10.1016/j.jog.2014.02.012
    [14]
    York D. Least squares fitting of a straight line with correlated errors[J]. Earth and Planetary Science Letters, 1968, 5: 320−324. doi: 10.1016/S0012-821X(68)80059-7
    [15]
    Lomb N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and Space Science, 1976, 39(2): 447−462. doi: 10.1007/BF00648343
    [16]
    胡广书. 数字信号处理: 理论、算法与实现[M]. 2版. 北京: 清华大学出版社, 2003.

    Hu Gangshu. Digital Signal Processing: Theory, Algorithm and Implementatio[M]. 2nd ed. Beijing: Tsinghua University Press, 2003.
    [17]
    Nievinski F G, Larson K M. Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6564−6573. doi: 10.1109/TGRS.2013.2297688
    [18]
    Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531−544. doi: 10.1109/TSP.2013.2288675
    [19]
    Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903−995. doi: 10.1098/rspa.1998.0193
    [20]
    张慧娟, 李冬. 相关系数判决的EMD在振动数据趋势项提取中的应用[J]. 舰船电子工程, 2018, 38(5): 159−163. doi: 10.3969/j.issn.1672-9730.2018.05.038

    Zhang Huijuan, Li Dong. Application of EMD of correlation coefficient judgment in the extraction of vibration data trend[J]. Ship Electronic Engineering, 2018, 38(5): 159−163. doi: 10.3969/j.issn.1672-9730.2018.05.038
    [21]
    胡媛, 袁鑫泰, 刘卫, 等. 基于VMD-MA的GNSS-MR雪深监测方法[J/OL]. 北京航空航天大学学报, 1−12[2022−06−01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJHK20220323001&uniplatform=NZKPT&v=OizuDw5HNuMENFcfLu3840zfDU9p8qGXT15-9q9hf8ZmWIDAORcjqPsmh9G8awJe. DOI: 10.13700/j.bh.1001-5965.2021.0777

    Hu Yuan, Yuan Xintai, Liu Wei, et al. GNSS-MR snow depth monitoring method based on variational mode decomposition and moving average[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1−12[2022−06−01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJHK20220323001&uniplatform=NZKPT&v=OizuDw5HNuMENFcfLu3840zfDU9p8qGXT15-9q9hf8ZmWIDAORcjqPsmh9G8awJe. DOI: 10.13700/j.bh.1001-5965.2021.0777
    [22]
    杨婧, 程乃平, 倪淑燕. Welch算法在弱信号检测中的性能分析[J]. 计算机仿真, 2020, 37(5): 235−240. doi: 10.3969/j.issn.1006-9348.2020.05.047

    Yang Jing, Cheng Naiping, Ni Shuyan. Performance analysis of welch algorithm in weak signal detection[J]. Computer Simulation, 2020, 37(5): 235−240. doi: 10.3969/j.issn.1006-9348.2020.05.047
    [23]
    Lin Yuanpei, Vaidyanathan P P. A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks[J]. IEEE Signal Processing Letters, 1998, 5(6): 132−134. doi: 10.1109/97.681427
    [24]
    Arya R, Jaiswal S. Design of low pass FIR Filters using Kaiser window function with variable parameter Beta (β)[J]. International Journal of Multidisciplinary and Current Research, 2015, 3: 220−224.
    [25]
    Geremia-Nievinski F, Hobiger T, Haas R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 1−15. doi: 10.1007/s00190-020-01387-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views (311) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return