Citation: | Gong Caixia,Chen Xinjun,Gao Feng, et al. Impacts of ocean warming on potential habitat distribution of Ommastrephes bartramii in the Northwest Pacific Ocean[J]. Haiyang Xuebao,2022, 44(7):95–102 doi: 10.12284/hyxb2022134 |
[1] |
Tylianakis J M, Didham R K, Bascompte J, et al. Global change and species interactions in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(12): 1351−1363. doi: 10.1111/j.1461-0248.2008.01250.x
|
[2] |
Cheung W W L, Lam V W Y, Sarmiento J L, et al. Projecting global marine biodiversity impacts under climate change scenarios[J]. Fish and Fisheries, 2009, 10(3): 235−251. doi: 10.1111/j.1467-2979.2008.00315.x
|
[3] |
Cheung W W L, Lam V W Y, Sarmiento J L, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Global Change Biology, 2010, 16(1): 24−35. doi: 10.1111/j.1365-2486.2009.01995.x
|
[4] |
Freeman L A, Kleypas J A, Miller A J. Coral reef habitat response to climate change scenarios[J]. PLoS ONE, 2013, 8(12): e82404. doi: 10.1371/journal.pone.0082404
|
[5] |
Cheung W W L, Watson R, Pauly D. Signature of ocean warming in global fisheries catch[J]. Nature, 2013, 497(7449): 365−368. doi: 10.1038/nature12156
|
[6] |
Jones M C, Cheung W W L. Multi-model ensemble projections of climate change effects on global marine biodiversity[J]. ICES Journal of Marine Science, 2015, 72(3): 741−752. doi: 10.1093/icesjms/fsu172
|
[7] |
王尧耕, 陈新军. 世界大洋性经济柔鱼类资源及其渔业[M]. 北京: 海洋出版社, 2005.
Wang Yaogeng, Chen Xinjun. The Resource and Biology of Economic Oceanic Squid in the World[M]. Beijing: China Ocean Press, 2005.
|
[8] |
Ichii T, Mahapatra K, Sakai M, et al. Changes in abundance of the neon flying squid Ommastrephes bartramii in relation to climate change in the central North Pacific Ocean[J]. Marine Ecology Progress Series, 2011, 441: 151−164. doi: 10.3354/meps09365
|
[9] |
Yu Wei, Chen Xinjun, Yi Qian, et al. Influence of oceanic climate variability on stock level of western winter-spring cohort of Ommastrephes bartramii in the Northwest Pacific Ocean[J]. International Journal of Remote Sensing, 2016, 37(17): 3974−3994. doi: 10.1080/01431161.2016.1204477
|
[10] |
Alabia I D, Saitoh S I, Mugo R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific[J]. Fisheries Oceanography, 2015, 24(2): 190−203. doi: 10.1111/fog.12102
|
[11] |
Gong Caixia, Chen Xinjun, Gao Feng, et al. Importance of weighting for multi-variable habitat suitability index model: a case study of winter-spring cohort of Ommastrephes bartramii in the northwestern Pacific Ocean[J]. Journal of Ocean University of China, 2012, 11(2): 241−248. doi: 10.1007/s11802-012-1898-6
|
[12] |
陈新军, 刘必林, 田思泉, 等. 利用基于表温因子的栖息地模型预测西北太平洋柔鱼(Ommastrephes bartramii)渔场[J]. 海洋与湖沼, 2009, 40(6): 707−713. doi: 10.3321/j.issn:0029-814X.2009.06.006
Chen Xinjun, Liu Bilin, Tian Siquan, et al. Forecasting the fishing ground of Ommastrephes bartramii with SST-based habitat suitability modelling in northwestern Pacific[J]. Oceanologia et Limnologia Sinica, 2009, 40(6): 707−713. doi: 10.3321/j.issn:0029-814X.2009.06.006
|
[13] |
Cao Jie, Chen Xinjun, Chen Yong. Influence of surface oceanographic variability on abundance of the western winter-spring cohort of neon flying squid Ommastrephes bartramii in the Nw Pacific Ocean[J]. Marine Ecology Progress Series, 2009, 381(12): 119−127.
|
[14] |
赵宗慈, 罗勇, 黄建斌. 从检验CMIP5气候模式看CMIP6地球系统模式的发展[J]. 气候变化研究进展, 2018, 14(6): 643−648.
Zhao Zongci, Luo Yong, Huang Jianbin. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models[J]. Climate Change Research, 2018, 14(6): 643−648.
|
[15] |
IPCC. 气候变化2014: 综合报告[R]. 日内瓦: IPCC, 2014: 1-151.
IPCC. Climate change 2014: synthesis report[R]. Geneva: IPCC, 2014: 1−151.
|
[16] |
Gent P R, Danabasoglu G, Donner L J, et al. The community climate system model version 4[J]. Journal of Climate, 2011, 24(19): 4973−4991. doi: 10.1175/2011JCLI4083.1
|
[17] |
Long M C, Lindsay K, Peacock S, et al. Twentieth-century oceanic carbon uptake and storage in CESM1(BGC)[J]. Journal of Climate, 2013, 26(18): 6775−6800. doi: 10.1175/JCLI-D-12-00184.1
|
[18] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259.
|
[19] |
陈芃, 陈新军. 基于最大熵模型分析西南大西洋阿根廷滑柔鱼栖息地分布[J]. 水产学报, 2016, 40(6): 893−902.
Chen Peng, Chen Xinjun. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the Southwest Atlantic Ocean using maximum entropy model[J]. Journal of Fisheries of China, 2016, 40(6): 893−902.
|
[20] |
Phillips S J. A brief tutorial on Maxent[EB/OL]. [2019−03−07]. http://biodiversityinformatics.amnh.org/open_source/maxent/.
|
[21] |
Ichii T, Mahapatra K, Sakai M, et al. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean[J]. Marine Ecology Progress Series, 2009, 378: 1−11. doi: 10.3354/meps07873
|
[22] |
陈新军, 田思泉. 西北太平洋海域柔鱼的产量分布及作业渔场与表温的关系研究[J]. 中国海洋大学学报 (自然科学版), 2005, 35(1): 101−107.
Chen Xinjun, Tian Siquan. Study on the catch distribution and relationship between fishing ground and surface temperature for Ommastrephes bartrami in the northwestern Pacific Ocean[J]. Periodical of Ocean University of China, 2005, 35(1): 101−107.
|
[23] |
余为. 西北太平洋柔鱼冬春生群对气候与环境变化的响应机制研究[D]. 上海: 上海海洋大学, 2016.
Yu Wei. Response mechanism of winter-spring cohort of neon flying squid to the climatic and environmental variability in the Northwest Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2016
|
[24] |
刘娜, 王辉, 张蕴斐. 基于IPCC预测结果的北太平洋海表面温度变化分析[J]. 海洋学报, 2014, 36(7): 9−16.
Liu Na, Wang Hui, Zhang Yunfei. Variation of sea surface temperature in the North Pacific based on different IPCC scenarios[J]. Haiyang Xuebao, 2014, 36(7): 9−16.
|
[25] |
曹杰. 西北太平洋柔鱼资源评估与管理[D]. 上海: 上海海洋大学, 2010.
Cao Jie. Stock assessment and risk analysis of management strategies for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2010.
|
[26] |
范江涛, 陈新军, 曹杰, 等. 西北太平洋柔鱼渔场变化与黑潮的关系[J]. 上海海洋大学学报, 2010, 19(3): 378−384.
Fan Jiangtao, Chen Xinjun, Cao Jie, et al. The variation of fishing ground of Ommastrephes bartramii in the Northwest Pacific concerning with Kuroshio current[J]. Journal of Shanghai Ocean University, 2010, 19(3): 378−384.
|
[27] |
FAO. Climate change implications for fisheries and aquaculture: summary of the findings of the intergovernmental panel on climate change fifth assessment report [R]. Rome: FAO, 2016.
|
[28] |
Nguyen K D T, Morley S A, Lai C H, et al. Upper temperature limits of tropical marine ectotherms: global warming implications[J]. PLoS ONE, 2011, 6(12): e29340.
|
[29] |
Alabia I D, Saitoh S I, Igarashi H, et al. Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific[J]. ICES Journal of Marine Science, 2016, 73(5): 1343−1356. doi: 10.1093/icesjms/fsv203
|
[30] |
Shultz A D, Zuckerman Z C, Tewart H A, et al. Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change[J]. Conservation Physiology, 2014, 2(1): cou028. doi: 10.1093/conphys/cou028
|
[31] |
Jones M C, Dye S R, Pinnegar J K, et al. Modelling commercial fish distributions: prediction and assessment using different approaches[J]. Ecological Modelling, 2012, 225: 133−145. doi: 10.1016/j.ecolmodel.2011.11.003
|