Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Tian Zhongxiang,Sun Hulin,Li Zhiqiang, et al. Analysis on the characteristics of the temporal and spatial variation of near-surface meteorological parameters affecting the navigation in Arctic passage in summer[J]. Haiyang Xuebao,2022, 44(11):12–30 doi: 10.12284/hyxb2022133
Citation: Tian Zhongxiang,Sun Hulin,Li Zhiqiang, et al. Analysis on the characteristics of the temporal and spatial variation of near-surface meteorological parameters affecting the navigation in Arctic passage in summer[J]. Haiyang Xuebao,2022, 44(11):12–30 doi: 10.12284/hyxb2022133

Analysis on the characteristics of the temporal and spatial variation of near-surface meteorological parameters affecting the navigation in Arctic passage in summer

doi: 10.12284/hyxb2022133
  • Received Date: 2021-12-14
  • Rev Recd Date: 2022-05-28
  • Available Online: 2022-08-02
  • Publish Date: 2022-11-03
  • Based on the ERA5 reanalysis data and the meteorological observation data obtained during Chinese Arctic Research Expeditions, the temporal and spatial variation characteristics of the key near-surface meteorological parameters that influence ship navigation in the Arctic passages in summer are analyzed. The results show that the weather conditions in July and August are the most suitable for ship navigation in the Arctic passages. The low temperature, strong wind and huge wave weather increase significantly in September, which impacts ship navigation greatly. The weather in October is even worse, posing a quit challenge to ship navigation. Low temperature mainly occurs in the middle of each passage, and strong wind and huge wave are concentrated in the areas at both ends of the passages. Both the strong wind probability and huge wave probability show a decreasing tendency in the entire Arctic passages in summer with large interannual changes except for the Norwegian Sea and Barents Sea in October and the central Arctic in summer. According to the observation data, it is found that the northeast passage has the poorest visibility, the northwest passage has the best visibility, and the trans-Arctic passage has moderate visibility.
  • loading
  • [1]
    Simmonds I, Li Muyuan. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity[J]. Annals of the New York Academy of Sciences, 2021, 1504(1): 167−186. doi: 10.1111/nyas.14673
    [2]
    Simmonds I, Keay K. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008[J]. Geophysical Research Letters, 2009, 36(19): L19715. doi: 10.1029/2009GL039810
    [3]
    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979–2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012
    [4]
    Parkinson C L, DiGirolamo N E. New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s[J]. Remote Sensing of Environment, 2016, 183: 198−204. doi: 10.1016/j.rse.2016.05.020
    [5]
    Liang Xi, Li Xichen, Bi Haibo, et al. A comparison of factors that led to the extreme sea ice minima in the twenty-first century in the Arctic Ocean[J]. Journal of Climate, 2022, 35(4): 1249−1265. doi: 10.1175/JCLI-D-21-0199.1
    [6]
    李珵, 苏洁, 魏立新, 等. 北极中央区海冰低密集度现象研究[J]. 海洋学报, 2018, 40(11): 33−45.

    Li Cheng, Su Jie, Wei Lixin, et al. Exploration of anomalous low sea ice concentration phenomenon in the Central Arctic[J]. Haiyang Xuebao, 2018, 40(11): 33−45.
    [7]
    Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [8]
    Bi Haibo, Zhang Jinlun, Wang Yunhe, et al. Arctic sea ice volume changes in terms of age as revealed from satellite observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2223−2237. doi: 10.1109/JSTARS.2018.2823735
    [9]
    Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12024. doi: 10.1029/2009JC005436
    [10]
    Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness[J]. The Cryosphere, 2014, 8(5): 1839−1854. doi: 10.5194/tc-8-1839-2014
    [11]
    Stroeve J C, Crawford A D, Stammerjohn S. Using timing of ice retreat to predict timing of fall freeze ‐ up in the Arctic[J]. Geophysical Research Letters, 2016, 43(12): 6332−6340. doi: 10.1002/2016GL069314
    [12]
    Serreze M C, Crawford A D, Stroeve J C, et al. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(10): 7308−7325. doi: 10.1002/2016JC011977
    [13]
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001. doi: 10.1088/1748-9326/aade56
    [14]
    李春花, 李明, 赵杰臣, 等. 近年北极东北和西北航道开通状况分析[J]. 海洋学报, 2014, 36(10): 33−47.

    Li Chunhua, Li Ming, Zhao Jiechen, et al. Navigable status analysis of Arctic northeast and northwest passage in recent years[J]. Haiyang Xuebao, 2014, 36(10): 33−47.
    [15]
    季青, 董江, 庞小平, 等. 北极东北航道夏季海冰冰情与适航性分析[J]. 船舶力学, 2021, 25(8): 991−1000. doi: 10.3969/j.issn.1007-7294.2021.08.002

    Ji Qing, Dong Jiang, Pang Xiaoping, et al. Analysis of sea ice conditions and navigability of Arctic northeast passage in summer[J]. Journal of Ship Mechanics, 2021, 25(8): 991−1000. doi: 10.3969/j.issn.1007-7294.2021.08.002
    [16]
    Zhou Xiangying, Min Chao, Yang Yijun, et al. Revisiting trans-arctic maritime navigability in 2011–2016 from the perspective of sea ice thickness[J]. Remote Sensing, 2021, 13(14): 2766. doi: 10.3390/rs13142766
    [17]
    Cao Yunfeng, Liang Shunlin, Sun Laixiang, et al. Trans-Arctic shipping routes expanding faster than the model projections[J]. Global Environmental Change, 2022, 73: 102488. doi: 10.1016/j.gloenvcha.2022.102488
    [18]
    Mudryk L R, Dawson J, Howell S E L, et al. Impact of 1, 2 and 4 °C of global warming on ship navigation in the Canadian Arctic[J]. Nature Climate Change, 2021, 11(8): 673−679. doi: 10.1038/s41558-021-01087-6
    [19]
    Chen Jinlei, Kang Shichang, Chen Changsheng, et al. Changes in sea ice and future accessibility along the Arctic northeast passage[J]. Global and Planetary Change, 2020, 195: 103319. doi: 10.1016/j.gloplacha.2020.103319
    [20]
    Wei Ting, Yan Qing, Qi Wei, et al. Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios[J]. Environmental Research Letters, 2020, 15(10): 104079. doi: 10.1088/1748-9326/abb2c8
    [21]
    Li Xueke, Stephenson S R, Lynch A H, et al. Arctic shipping guidance from the CMIP6 ensemble on operational and infrastructural timescales[J]. Climatic Change, 2021, 167(1/2): 23.
    [22]
    Min Chao, Yang Qinghua, Chen Dake, et al. The emerging Arctic shipping corridors[J]. Geophysical Research Letters, 2022, 49(10): e2022GL099157.
    [23]
    闵超, 杨清华. 北极海洋环境保护工作组(PAME)北极航运状况报告介绍[J]. 极地研究, 2020, 32(2): 279−280.

    Min Chao, Yang Qinghua. Introduction to the arctic shipping status report of the protection of the Arctic Marine Environment Working Group (PAME)[J]. Chinese Journal of Polar Research, 2020, 32(2): 279−280.
    [24]
    解思梅, 薛振和, 曲绍厚, 等. 北冰洋夏季的海雾[J]. 海洋学报, 2001, 23(6): 40−50.

    Xie Simei, Xue Zhenhe, Qu Shaohou, et al. Summer Arctic sea fog[J]. Haiyang Xuebao, 2001, 23(6): 40−50.
    [25]
    Yamagami A, Matsueda M, Tanaka H L. Medium-range forecast skill for extraordinary Arctic cyclones in summer of 2008–2016[J]. Geophysical Research Letters, 2018, 45(9): 4429−4437. doi: 10.1029/2018GL077278
    [26]
    Inoue J. Review of forecast skills for weather and sea ice in supporting Arctic navigation[J]. Polar Science, 2021, 27: 100523. doi: 10.1016/j.polar.2020.100523
    [27]
    孙启振, 丁卓铭, 沈辉, 等. 我国极地数值天气预报系统的初步建立与应用[J]. 海洋预报, 2017, 34(4): 1−10. doi: 10.11737/j.issn.1003-0239.2017.04.001

    Sun Qizhen, Ding Zhuoming, Shen Hui, et al. Polar numerical weather prediction system: preliminary establishment and application[J]. Marine Forecasts, 2017, 34(4): 1−10. doi: 10.11737/j.issn.1003-0239.2017.04.001
    [28]
    Ren Shihe, Liang Xi, Sun Qizhen, et al. A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results[J]. Geoscientific Model Development, 2021, 14(2): 1101−1124. doi: 10.5194/gmd-14-1101-2021
    [29]
    Randriamampianina R, Bormann N, Køltzow M A Ø, et al. Relative impact of observations on a regional Arctic numerical weather prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(737): 2212−2232. doi: 10.1002/qj.4018
    [30]
    Lawrence H, Bormann N, Sandu I, et al. Use and impact of Arctic observations in the ECMWF numerical weather prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(725): 3432−3454. doi: 10.1002/qj.3628
    [31]
    Gascard J C, Riemann-Campe K, Gerdes R, et al. Future sea ice conditions and weather forecasts in the Arctic: implications for Arctic shipping[J]. Ambio, 2017, 46(3): 355−367.
    [32]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.3−2007, 海洋调查规范 第3部分: 海洋气象观测[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.3−2007, Specifications for oceanographic survey-Part 3: Marine meteorological observations[S]. Beijing: Standards Press of China, 2008.
    [33]
    中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003: 126.

    China Meteorological Administration. Specifications for Surface Meteorological Observation[M]. Beijing: China Meteorological Press, 2003: 126.
    [34]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [35]
    Chylek P, Folland C, Klett J D, et al. Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6 climate models[J]. Geophysical Research Letters, 2022: e2022GL099371.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views (769) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return