Citation: | Meng Linqing,Huang Wen,Yang Enguang, et al. High temperature bleaching events can increase thermal tolerance of Porites lutea in the Weizhou Island[J]. Haiyang Xuebao,2022, 44(8):87–96 doi: 10.12284/hyxb2022126 |
[1] |
Moberg F, Folke C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999, 29(2): 215−233. doi: 10.1016/S0921-8009(99)00009-9
|
[2] |
赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1): 186−194. doi: 10.3321/j.issn:1000-0933.2006.01.025
Zhao Meixia, Yu Kefu, Zhang Qiaomin. Review on coral reefs biodiversity and ecological function[J]. Acta Ecologica Sinica, 2006, 26(1): 186−194. doi: 10.3321/j.issn:1000-0933.2006.01.025
|
[3] |
Hoegh-Guldberg O, Kennedy E V, Beyer H L, et al. Securing a long-term future for coral reefs[J]. Trends in Ecology & Evolution, 2018, 33(12): 936−944.
|
[4] |
Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80−83. doi: 10.1126/science.aan8048
|
[5] |
Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities[J]. Regional Studies in Marine Science, 2015, 2: 27−31. doi: 10.1016/j.rsma.2015.08.012
|
[6] |
McLachlan R H, Price J T, Solomon S L, et al. Thirty years of coral heat-stress experiments: a review of methods[J]. Coral Reefs, 2020, 39(4): 885−902. doi: 10.1007/s00338-020-01931-9
|
[7] |
Wright R M, Mera H, Kenkel C D, et al. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors[J]. Global Change Biology, 2019, 25(10): 3294−3304. doi: 10.1111/gcb.14764
|
[8] |
Yu Xiaopeng, Yu Kefu, Huang Wen, et al. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa[J]. Science of the Total Environment, 2020, 733: 139319. doi: 10.1016/j.scitotenv.2020.139319
|
[9] |
Maynard J A, Anthony K R N, Marshall P A, et al. Major bleaching events can lead to increased thermal tolerance in corals[J]. Marine Biology, 2008, 155(2): 173−182. doi: 10.1007/s00227-008-1015-y
|
[10] |
Thompson D M, van Woesik R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1669): 2893−2901. doi: 10.1098/rspb.2009.0591
|
[11] |
Harrison H B, Álvarez-Noriega M, Baird A H, et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea[J]. Coral Reefs, 2019, 38(4): 713−719. doi: 10.1007/s00338-018-01749-6
|
[12] |
Middlebrook R, Hoegh-Guldberg O, Leggat W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress[J]. Journal of Experimental Biology, 2008, 211: 1050−1056. doi: 10.1242/jeb.013284
|
[13] |
刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.
Liu Xu. The response mechanisms of scleractinian coral to temperature stress[D]. Nanning: Guangxi University, 2020.
|
[14] |
王文欢. 近30年来北部湾涠洲岛造礁石珊瑚群落演变及影响因素[D]. 南宁: 广西大学, 2017.
Wang Wenhuan. Evolvement and influential factors of coral community over past three decases in Weizhou Island Reef, Beibu Gulf[D]. Nanning: Guangxi University, 2017.
|
[15] |
Yu Xiaopeng, Yu Kefu, Chen Biao, et al. Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events[J]. Coral Reefs, 2021, 40(6): 1697−1711. doi: 10.1007/s00338-021-02182-y
|
[16] |
牛文涛, 田鹏, 林荣澄, 等. 蓝碧海峡澄黄滨珊瑚群体遗传多样性[J]. 应用海洋学学报, 2015, 34(3): 419−426. doi: 10.3969/j.issn.2095-4972.2015.03.015
Niu Wentao, Tian Peng, Lin Rongcheng, et al. Genetic structure of ITS gene sequence of Porites lutea populations in Lembeh Strait[J]. Journal of Applied Oceanography, 2015, 34(3): 419−426. doi: 10.3969/j.issn.2095-4972.2015.03.015
|
[17] |
Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie Und Physiologie Der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
|
[18] |
Tang Jia, Ni Xingzhen, Zhou Zhi, et al. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis[J]. Environmental Pollution, 2018, 243: 66−74. doi: 10.1016/j.envpol.2018.08.045
|
[19] |
Zhou Zhi, Ni Xingzhen, Wu Zhongjie, et al. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113074. doi: 10.1016/j.ecoenv.2021.113074
|
[20] |
李淑, 余克服, 施祺, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6): 534−539. doi: 10.3969/j.issn.1001-5221.2008.06.009
Li Shu, Yu Kefu, Shi Qi, et al. Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island[J]. Tropical Geography, 2008, 28(6): 534−539. doi: 10.3969/j.issn.1001-5221.2008.06.009
|
[21] |
Meikle P, Richards G N, Yellowlees D. Structural investigations on the mucus from six species of coral[J]. Marine Biology, 1988, 99(2): 187−193. doi: 10.1007/BF00391980
|
[22] |
Hinrichs S, Patten N L, Waite A M. Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera—implications for monitoring projects[J]. PLoS One, 2013, 8(5): e63693. doi: 10.1371/journal.pone.0063693
|
[23] |
张海洋, 赵美霞, 钟瑜, 等. 南海北部造礁石珊瑚共生体光合作用特征季节性监测[J]. 海洋地质前沿, 2021, 37(6): 84−91.
Zhang Haiyang, Zhao Meixia, Zhong Yu, et al. Seasonal monitoring of photosynthesis characteristics of scleractinian corals in the northern South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 84−91.
|
[24] |
Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs[J]. Marine and Freshwater Research, 1999, 50(8): 839−866.
|
[25] |
Downs C A, Mueller E, Phillips S, et al. A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress[J]. Marine Biotechnology, 2000, 2(6): 533−544. doi: 10.1007/s101260000038
|
[26] |
Moya A, Sakamaki K, Mason B M, et al. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora[J]. BMC Genomics, 2016, 17(1): 62. doi: 10.1186/s12864-015-2355-x
|
[27] |
Bhagooli R, Hidaka M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2004, 137(3): 547−555.
|
[28] |
Cziesielski M J, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055−10066. doi: 10.1002/ece3.5576
|
[29] |
Fridovich I. Superoxide anion radical (
|
[30] |
王小巍, 张红艳, 刘锐, 等. 谷胱甘肽的研究进展[J]. 中国药剂学杂志(网络版), 2019, 17(4): 141-148.
Wang Xiaowei, Zhang Hongyan, Liu Rui, et al. Progress in research of glutathione[J]. Chinese Journal of Pharmaceutics (Online Edition), 17(4): 141−148.
|
[31] |
董金龙. 金银花中过氧化物酶的纯化及性质研究[D]. 洛阳: 河南科技大学, 2017.
Dong Jinlong. Study on purification and characterisation of peroxidase from Honeysuckle[D]. Luoyang: Henan University of Science and Technology, 2017.
|
[32] |
Gates R D, Baghdasarian G, Muscatine L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching[J]. The Biological Bulletin, 1992, 182(3): 324−332. doi: 10.2307/1542252
|
[33] |
Perez S, Weis V. Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis[J]. Journal of Experimental Biology, 2006, 209(14): 2804−2810. doi: 10.1242/jeb.02309
|
[34] |
Su Yilu, Zhou Zhi, Yu Xiaopeng. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral[J]. Molecular Biology Reports, 2018, 45(6): 2115−2124. doi: 10.1007/s11033-018-4369-3
|
[35] |
Rädecker N, Pogoreutz C, Gegner H M, et al. Heat stress destabilizes symbiotic nutrient cycling in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(5): e2022653118. doi: 10.1073/pnas.2022653118
|
[36] |
晁华, 申玉春, 刘丽. 氮磷对珊瑚过氧化氢酶和超氧化物歧化酶活性的影响[J]. 中国农学通报, 2016, 32(17): 12−19. doi: 10.11924/j.issn.1000-6850.casb16010084
Chao Hua, Shen Yuchun, Liu Li. Nitrogen and phosphorus affecting activities of catalase and superoxide dismutase in coral[J]. Chinese Agricultural Science Bulletin, 2016, 32(17): 12−19. doi: 10.11924/j.issn.1000-6850.casb16010084
|
[37] |
许惠丽, 冯博轩, 谢敏睿, 等. 三亚蜈支洲岛两种造礁石珊瑚的生理特征[J]. 应用海洋学学报, 2020, 39(2): 181−188. doi: 10.3969/J.ISSN.2095-4972.2020.02.004
Xu Huili, Feng Boxuan, Xie Minrui, et al. Physiological characteristics of two reef-building corals in Wuzhizhou Island, Sanya[J]. Journal of Applied Oceanography, 2020, 39(2): 181−188. doi: 10.3969/J.ISSN.2095-4972.2020.02.004
|
[38] |
Xu Huili, Feng Boxuan, Xie Minrui, et al. Physiological characteristics and environment adaptability of reef-building corals at the Wuzhizhou Island of South China Sea[J]. Frontiers in Physiology, 2020, 11: 390. doi: 10.3389/fphys.2020.00390
|
[39] |
Flores-Ramírez L A, Liñán-Cabello M A. Relationships among thermal stress, bleaching and oxidative damage in the hermatypic coral, Pocillopora capitata[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 146(1/2): 194−202.
|
[40] |
Keshavmurthy S, Beals M, Hsieh H J, et al. Physiological plasticity of corals to temperature stress in marginal coral communities[J]. Science of the Total Environment, 2021, 758: 143628. doi: 10.1016/j.scitotenv.2020.143628
|
[41] |
Berkelmans R, De’ath G, Kininmonth S, et al. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions[J]. Coral Reefs, 2004, 23(1): 74−83. doi: 10.1007/s00338-003-0353-y
|
[42] |
Rowan R. Coral bleaching: Thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001): 742. doi: 10.1038/430742a
|
[43] |
Berkelmans R, Willis B L. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef[J]. Coral Reefs, 1999, 18(3): 219−228. doi: 10.1007/s003380050186
|