Citation: | Ge Zhaopei,Tang Jun,Zhao Chuyan. Numerical study on influence of vegetation on bed shear stress under coastal waves[J]. Haiyang Xuebao,2022, 44(11):111–120 doi: 10.12284/hyxb2022125 |
[1] |
Jonsson I G. Wave boundary layers and friction factors[C]//Proceedings of the 10th International Conference on Coastal Engineering. Tokyo: ASCE, 1966: 127−148.
|
[2] |
孔令双, 曹祖德, 焦桂英, 等. 波、流共存时的床面剪切力和泥沙运动[J]. 水动力学研究与进展(A辑), 2003, 18(1): 93−97.
Kong Lingshuang, Cao Zude, Jiao Guiying, et al. The bottom shear stress and sediment movement for a wave-current coexisting system[J]. Journal of Hydrodynamics Series A, 2003, 18(1): 93−97.
|
[3] |
蔡翠苏. 波浪作用下底摩阻系数和泥沙起动实验研究[D]. 南京: 河海大学, 2007.
Cai Cuisu. Laboratory investigation on wave friction factor and sediment initial motion under water waves[D]. Nanjing: Hohai University, 2007.
|
[4] |
齐富康, 边昌伟, 徐景平. 渤海海峡沉积物输运的参数化计算[J]. 海洋学报, 2020, 42(3): 83−96.
Qi Fukang, Bian Changwei, Xu Jingping. Parameterization of sediment transport in the Bohai Strait[J]. Haiyang Xuebao, 2020, 42(3): 83−96.
|
[5] |
Lin Pengzhi, Zhang Wenyu. Numerical simulation of wave-induced laminar boundary layers[J]. Coastal Engineering, 2008, 55(5): 400−408. doi: 10.1016/j.coastaleng.2007.12.005
|
[6] |
滕涌, 杨永增, 芦静, 等. 波浪对泥沙作用的数值研究及在渤海区域的检验[J]. 海洋学报, 2012, 34(5): 174−182.
Teng Yong, Yang Yongzeng, Lu Jing, et al. A numerical study of the wave effect on sediment transport and test in the Bohai Sea[J]. Haiyang Xuebao, 2012, 34(5): 174−182.
|
[7] |
Larsen B E, Fuhrman D R. Full-scale CFD simulation of tsunamis. Part 1: model validation and run-up[J]. Coastal Engineering, 2019, 151: 22−41. doi: 10.1016/j.coastaleng.2019.04.012
|
[8] |
Larsen B E, Fuhrman D R. Full-scale CFD simulation of tsunamis. Part 2: boundary layers and bed shear stresses[J]. Coastal Engineering, 2019, 151: 42−57. doi: 10.1016/j.coastaleng.2019.04.011
|
[9] |
Wang X Y, Xie W M, Zhang D, et al. Wave and vegetation effects on flow and suspended sediment characteristics: a flume study[J]. Estuarine, Coastal and Shelf Science, 2016, 182: 1−11. doi: 10.1016/j.ecss.2016.09.009
|
[10] |
Reidenbach M A, Thomas E L. Influence of the Seagrass, Zostera marina, on wave attenuation and bed shear stress within a shallow coastal bay[J]. Frontiers in Marine Science, 2018, 5: 397. doi: 10.3389/fmars.2018.00397
|
[11] |
陈家贵, 沈小雄. 波浪作用下柔性植物对最大床面剪切力的影响研究[J]. 中国水运(下半月), 2016, 16(4): 278−280.
Chen Jiagui, Shen Xiaoxiong. Study on the effect of flexible plants on the maximum bed shear stress under waves[J]. China Water Transport, 2016, 16(4): 278−280.
|
[12] |
李勰, 陈杰, 蒋昌波, 等. 规则波下刚性植物根茎对边界层最大剪切力特性影响研究[J]. 海洋学报, 2021, 43(12): 102−110.
Li Xie, Chen Jie, Jiang Changbo, et al. Study on the influence of rigid plant roots and stems on the maximum shearing characteristics of boundary layer under regular wave[J]. Haiyang Xuebao, 2021, 43(12): 102−110.
|
[13] |
Luhar M, Coutu S, Infantes E, et al. Wave-induced velocities inside a model seagrass bed[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12005. doi: 10.1029/2010JC006345
|
[14] |
Hansen J C R, Reidenbach M A. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension[J]. Marine Ecology Progress Series, 2012, 448: 271−287. doi: 10.3354/meps09225
|
[15] |
Etminan V, Ghisalberti M, Lowe R J. Predicting bed shear stresses in vegetated channels[J]. Water Resources Research, 2018, 54(11): 9187−9206. doi: 10.1029/2018WR022811
|
[16] |
Jacobsen N G, Fuhrman D R, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073−1088. doi: 10.1002/fld.2726
|
[17] |
Maza M, Lara J L, Losada I J. Tsunami wave interaction with mangrove forests: a 3-D numerical approach[J]. Coastal Engineering, 2015, 98: 33−54. doi: 10.1016/j.coastaleng.2015.01.002
|
[18] |
Hu Z, Suzuki T, Zitman T, et al. Laboratory study on wave dissipation by vegetation in combined current-wave flow[J]. Coastal Engineering, 2014, 88: 131−142. doi: 10.1016/j.coastaleng.2014.02.009
|
[19] |
Devolder B, Rauwoens P, Troch P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®[J]. Coastal Engineering, 2017, 125: 81−94. doi: 10.1016/j.coastaleng.2017.04.004
|
[20] |
Larsen B E, Fuhrman D R. On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier-Stokes models[J]. Journal of Fluid Mechanics, 2018, 853: 419−460. doi: 10.1017/jfm.2018.577
|
[21] |
Hiraoka H, Ohashi M. A (k–ε) turbulence closure model for plant canopy flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2139−2149.
|
[22] |
Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1984, 110(1): 67−79. doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
|
[23] |
Etminan V, Lowe R J, Ghisalberti M. Canopy resistance on oscillatory flows[J]. Coastal Engineering, 2019, 152: 103502. doi: 10.1016/j.coastaleng.2019.04.014
|
[24] |
Wang Y X, Yin Z G, Liu Y. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model[J]. Advances in Water Resources, 2020, 146: 103755. doi: 10.1016/j.advwatres.2020.103755
|
[25] |
王倚彤. 植被水域同向水流影响下规则波传播模拟研究[D]. 大连: 大连理工大学, 2019.
Wang Yitong. Simulation study of regular wave propagation under the influence of coplanar currents in vegetation zones[D]. Dalian: Dalian University of Technology, 2019.
|
[26] |
徐华, 夏云峰, 蔡喆伟, 等. 复杂水动力环境下床面切应力量测与研究初探[C]//第十八届中国海洋(岸)工程学术讨论会. 北京: 海洋出版社, 2017: 260-266.
Xu Hua, Xia Yunfeng, Cai Zhewei, et al. Measurement and study of bed shear stress under complex hydrodynamic environment[C]// The 18th China Offshore Engineering Symposium. Beijing: China Ocean Press, 2017: 260−266.
|
[27] |
Lamb H. Hydrodynamics[M]. Cambridge: Cambridge University Press, 1932.
|
[28] |
Schaffer H A, Svendsen I A. Boundary layer flow under skew waves[J]. Int. Hydrodyn. and Hydraulic Engrg. 1986: 13−23.
|
[29] |
Liu D, Diplas P, Fairbanks J D, et al. An experimental study of flow through rigid vegetation[J]. Journal of Geophysical Research Earth Surface, 2008, 113(F4): F04015.
|
[30] |
陈明, 刘曙光, 娄厦, 等. 刚性植物对波高衰减和水流结构的影响[J]. 水利水电科技进展, 2018, 38(6): 32−37.
Chen Ming, Liu Shuguang, Lou Sha, et al. Impact of rigid vegetation on wave attenuation and flow structure[J]. Advances in Science and Technology of Water Resources, 2018, 38(6): 32−37.
|
[31] |
Nepf H M. Hydrodynamics of vegetated channels[J]. Journal of Hydraulic Research, 2012, 50(3): 262−279. doi: 10.1080/00221686.2012.696559
|
[32] |
Tolman H L. An evaluation of expressions for wave energy dissipation due to bottom friction in the presence of currents[J]. Coastal Engineering, 1992, 16(2): 165−179. doi: 10.1016/0378-3839(92)90035-S
|