Citation: | Zhang Huanwei,Ma Yi,Zhang Jingyu. Multi-dimensional analysis of atmospheric correction models on multi-spectral water depth inversion[J]. Haiyang Xuebao,2022, 44(7):145–160 doi: 10.12284/hyxb2022122 |
[1] |
王艳姣, 董文杰, 张培群, 等. 水深可见光遥感方法研究进展[J]. 海洋通报, 2007, 26(5): 92−101. doi: 10.3969/j.issn.1001-6392.2007.05.015
Wang Yanjiao, Dong Wenjie, Zhang Peiqun, et al. Progress in water depth mapping from visible remote sensing data[J]. Marine Science Bulletin, 2007, 26(5): 92−101. doi: 10.3969/j.issn.1001-6392.2007.05.015
|
[2] |
Renosh P R, Doxaran D, De Keukelaere L, et al. Evaluation of atmospheric correction algorithms for sentinel-2-MSI and sentinel-3-OLCI in highly turbid estuarine waters[J]. Remote Sensing, 2020, 12(8): 1285. doi: 10.3390/rs12081285
|
[3] |
Gordon H R. Removal of atmospheric effects from satellite imagery of the oceans[J]. Applied Optics, 1978, 17(10): 1631−1636. doi: 10.1364/AO.17.001631
|
[4] |
Gordon H R, Clark D K. Atmospheric effects in the remote sensing of phytoplankton pigments[J]. Boundary-Layer Meteorology, 1980, 18(3): 299−313. doi: 10.1007/BF00122026
|
[5] |
Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897−912. doi: 10.1364/AO.39.000897
|
[6] |
孔金玲, 杨晶, 孙晓明, 等. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130−137.
Kong Jinling, Yang Jing, Sun Xiaoming, et al. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: a case study of Caofeidian offshore area[J]. Remote Sensing for Land & Resources, 2016, 28(3): 130−137.
|
[7] |
郑伟, 曾志远. 遥感图像大气校正方法综述[J]. 遥感信息, 2004(4): 66−70. doi: 10.3969/j.issn.1000-3177.2004.04.019
Zheng Wei, Zeng Zhiyuan. A review on methods of atmospheric correction for remote sensing images[J]. Remote Sensing Information, 2004(4): 66−70. doi: 10.3969/j.issn.1000-3177.2004.04.019
|
[8] |
Wang Hanghang, Wang Jie, Cui Yuhuan, et al. Consistency of suspended particulate matter concentration in turbid water retrieved from sentinel-2 MSI and landsat-8 OLI sensors[J]. Sensors, 2021, 21(5): 1662. doi: 10.3390/s21051662
|
[9] |
马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
Ma Yi, Zhang Jie, Zhang Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
|
[10] |
Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978, 17(3): 379−383. doi: 10.1364/AO.17.000379
|
[11] |
杨晓彤, 焦红波, 李艳雯, 等. 两种浅海水深快速反演方法对比研究[J]. 测绘科学, 2017, 42(11): 177−183.
Yang Xiaotong, Jiao Hongbo, Li Yanwen, et al. Comparative research of two methods for fast waterdepthretrieval for shallow water[J]. Science of Surveying and Mapping, 2017, 42(11): 177−183.
|
[12] |
张鹰, 张东, 王艳姣, 等. 含沙水体水深遥感方法的研究[J]. 海洋学报, 2008, 30(1): 51−58.
Zhang Ying, Zhang Dong, Wang Yanjiao, et al. Study of remote sensing-based bathymetric method in sand-containing water bodies[J]. Haiyang Xuebao, 2008, 30(1): 51−58.
|
[13] |
许海蓬, 张彦彦, 王磊, 等. 大气校正对水深遥感反演的影响分析[J]. 现代测绘, 2017, 40(3): 1−4, 9. doi: 10.3969/j.issn.1672-4097.2017.03.001
Xu Haipeng, Zhang Yanyan, Wang Lei, et al. Influence analysis of atmospheric correction on bathymetry remote sensing inversion[J]. Modern Surveying and Mapping, 2017, 40(3): 1−4, 9. doi: 10.3969/j.issn.1672-4097.2017.03.001
|
[14] |
张彦彦, 许海蓬, 吴涛, 等. 不同波段数目及组合对水深反演的影响[J]. 江苏海洋大学学报(自然科学版), 2020, 29(2): 45−49.
Zhang Yanyan, Xu Haipeng, Wu Tao, et al. The influence of different band number and combination on bathymetric inversion[J]. Journal of Jiangsu Ocean University (Natural Sciences Edition), 2020, 29(2): 45−49.
|
[15] |
Penny P, Kathryn S, Holly B. United States Coast Pilot[M]. United States: National Oceanic and Atmospheric Administration, 2014, 32: 385−386.
|
[16] |
田震, 马毅, 张靖宇, 等. 基于Landsat-8遥感影像和LiDAR测深数据的水深主被动遥感反演研究[J]. 海洋技术学报, 2015, 34(2): 1−8.
Tian Zhen, Ma Yi, Zhang Jingyu, et al. Study on the bathymetry inversion by active and passive remote sensing with Landsat-8 images and LIDAR data[J]. Journal of Ocean Technology, 2015, 34(2): 1−8.
|
[17] |
金玉休, 曹志敏, 吴建政, 等. 辽东浅滩潮流运动特征与沉积物输运[J]. 海洋地质与第四纪地质, 2015, 35(6): 33−40.
Jin Yuxiu, Cao Zhimin, Wu Jianzheng, et al. Tidal current movement and its bearing on sediment transportation on Liaodong shoal[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 33−40.
|
[18] |
Vanhellemont Q, Ruddick K. Turbid wakes associated with offshore wind turbines observed with Landsat 8[J]. Remote Sensing of Environment, 2014, 145: 105−115. doi: 10.1016/j.rse.2014.01.009
|
[19] |
Martins V S, Barbosa C C F, De Carvalho L A S, et al. Assessment of atmospheric correction methods for sentinel-2 MSI images applied to amazon floodplain lakes[J]. Remote Sensing, 2017, 9(4): 322. doi: 10.3390/rs9040322
|
[20] |
Shen Junjie, Jiang Jie, Du Yixi, et al. Impact of aerosol type on atmospheric correction of case II waters[J]. IOP Conference Series: Earth and Environmental Science, 2019, 234(1): 012019.
|
[21] |
Vermote E F, Tanre D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675−686. doi: 10.1109/36.581987
|
[22] |
丁凡. 太湖OLI影像大气校正方法对比与适用性评价[D]. 西安: 西安科技大学, 2018.
Ding Fan. Comparison and applicability assessment of atmospheric correction methods of OLI images in Taihu Lake[D]. Xi’an: Xi’an University of Science and Technology, 2018.
|
[23] |
Cooley T, Anderson G P, Felde G W, et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation[C]//IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2002: 1414−1418.
|
[24] |
Rothman L S, Rinsland C P, Goldman A, et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(5): 665−710. doi: 10.1016/S0022-4073(98)00078-8
|
[25] |
Vanhellemont Q, Ruddick K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8[J]. Remote Sensing of Environment, 2015, 161: 89−106. doi: 10.1016/j.rse.2015.02.007
|
[26] |
Dörnhöfer K, Göritz A, Gege P, et al. Water constituents and water depth retrieval from sentinel-2A-A first evaluation in an oligotrophic lake[J]. Remote Sensing, 2016, 8(11): 941. doi: 10.3390/rs8110941
|
[27] |
Bernstein L S, Adler-Golden S M, Sundberg R L, et al. Validation of the Quick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery[C]//Proceedings of SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Orlando: SPIE, 2005: 668−678.
|
[28] |
Lyzenga D R, Malinas N R, Tanis F J. Multispectral bathymetry using a simple physically based algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2251−2259. doi: 10.1109/TGRS.2006.872909
|