Citation: | Ning Lixin,Hui Chun,Cheng Changxiu. Research on temporal and spatial variations of global tsunami based on complete catalog data[J]. Haiyang Xuebao,2022, 44(7):122–136 doi: 10.12284/hyxb2022118 |
[1] |
陈颙, 史培军. 自然灾害[M]. 3版. 北京: 北京师范大学出版社, 2013.
Chen Yong, Shi Peijun. Natural Disasters[M]. 3rd ed. Beijing: Beijing Normal University Press, 2013.
|
[2] |
Danielsen F, Sørensen M K, Olwig M F, et al. The Asian tsunami: a protective role for coastal vegetation[J]. Science, 2005, 310(5748): 643−643. doi: 10.1126/science.1118387
|
[3] |
刘毅, 杨宇. 历史时期中国重大自然灾害时空分异特征[J]. 地理学报, 2012, 67(3): 291−300. doi: 10.11821/xb201203001
Liu Yi, Yang Yu. Spatial distribution of major natural disasters of China in historical period[J]. Acta Geographica Sinica, 2012, 67(3): 291−300. doi: 10.11821/xb201203001
|
[4] |
Liu Yi, Yang Yu, Li Li. Major natural disasters and their spatio-temporal variation in the history of China[J]. Journal of Geographical Sciences, 2012, 22(6): 963−976. doi: 10.1007/s11442-012-0976-4
|
[5] |
Strydom S, Savage M J. A spatio-temporal analysis of fires in South Africa[J]. South African Journal of Science, 2016, 112(11/12): 8.
|
[6] |
Strydom S, Savage M J. A spatio-temporal analysis of fires in the southern African development community region[J]. Natural Hazards, 2018, 92(3): 1617−1632. doi: 10.1007/s11069-018-3268-1
|
[7] |
Yang Jing, Cheng Changxiu, Song Changqing, et al. Spatial-temporal distribution characteristics of global seismic clusters and associated spatial factors[J]. Chinese Geographical Science, 2019, 29(4): 614−625. doi: 10.1007/s11769-019-1059-6
|
[8] |
Karremann M K, Pinto J G, Von Bomhard P J, et al. On the clustering of winter storm loss events over Germany[J]. Natural Hazards and Earth System Sciences, 2014, 14(8): 2041−2052. doi: 10.5194/nhess-14-2041-2014
|
[9] |
Papagiannaki K, Lagouvardos K, Kotroni V. A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001−2011[J]. Natural Hazards and Earth System Sciences, 2013, 13(3): 727−736. doi: 10.5194/nhess-13-727-2013
|
[10] |
Federico S, Avolio E, Pasqualoni L, et al. Atmospheric patterns for heavy rain events in Calabria[J]. Natural Hazards and Earth System Sciences, 2008, 8(5): 1173−1186. doi: 10.5194/nhess-8-1173-2008
|
[11] |
Hossain M S, Roy K, Datta D K. Spatial and temporal variability of rainfall over the south-west coast of Bangladesh[J]. Climate, 2014, 2(2): 28−46. doi: 10.3390/cli2020028
|
[12] |
Santos J F, Pulido-Calvo I, Portela M M. Spatial and temporal variability of droughts in Portugal[J]. Water Resources Research, 2010, 46(3): W03503.
|
[13] |
Reddy M J, Ganguli P. Spatio-temporal analysis and derivation of copula-based intensity-area-frequency curves for droughts in western Rajasthan (India)[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(8): 1975−1989. doi: 10.1007/s00477-013-0732-z
|
[14] |
Wang Xiaoxue, Shen Huitao, Zhang Wanjun, et al. Spatial and temporal characteristics of droughts in the Northeast China Transect[J]. Natural Hazards, 2015, 76(1): 601−614. doi: 10.1007/s11069-014-1507-7
|
[15] |
Sassorova E V, Levin B W. Spatial, and temporal periodicity in the Pacific tsunami occurrence[M]. Yalçiner A C, Pelinovsky E N, Okal E. Submarine Landslides and Tsunamis. Dordrecht: Springer, 2003: 43−50.
|
[16] |
Satake K, Fujii Y, Harada T, et al. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1473−1492. doi: 10.1785/0120120122
|
[17] |
Lander J F, Whiteside L S, Lockridge P A. Two decades of global tsunamis[J]. Science of Tsunami Hazards, 2003, 21(1): 3.
|
[18] |
Levin B W, Sasorova E. The spatial-temporal distributions of the tsunamigenic earthquake sources[J]. Science of Tsunami Hazards, 2015, 34(1): 23.
|
[19] |
Levin B W, Sasorova E V. Spatiotemporal distributions of tsunami sources and discovered periodicities[J]. Izvestiya, Atmospheric and Oceanic Physics, 2014, 50(5): 485−497. doi: 10.1134/S0001433814050065
|
[20] |
曹罗丹, 李加林, 叶持跃, 等. 明清时期浙江沿海自然灾害的时空分异特征[J]. 地理研究, 2014, 33(9): 1778−1790.
Cao Luodan, Li Jialin, Ye Chiyue, et al. Spatial-temporal variations in natural disasters of the coastal regions in Zhejiang Province during Ming and Qing dynasties[J]. Geographical Research, 2014, 33(9): 1778−1790.
|
[21] |
Dunbar P K, Stroker K J, Brocko V R, et al. Long-term tsunami data archive supports tsunami forecast, warning, research, and mitigation[M]//Cummins P R, Satake K, Kong L S L. Tsunami Science Four Years after the 2004 Indian Ocean Tsunami. Birkhäuser Basel: Springer, 2008: 2275−2291.
|
[22] |
Geist E L, Parsons T. Assessing historical rate changes in global tsunami occurrence[J]. Geophysical Journal International, 2011, 187(1): 497−509. doi: 10.1111/j.1365-246X.2011.05160.x
|
[23] |
Ning Lixin, Cheng Changxiu, Cruz A M, et al. Exploring of the spatially varying completeness of a tsunami catalogue[J]. Natural Hazards, 2022, 111(1): 191−212.
|
[24] |
Albarello D, Camassi R, Rebez A. Detection of space and time heterogeneity in the completeness of a seismic catalog by a statistical approach: an application to the Italian area[J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1694−1703. doi: 10.1785/0120000058
|
[25] |
Kanamori H, Abe K. Reevaluation of the turn-of-the-century seismicity peak[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B11): 6131−6139.
|
[26] |
Pérez O J, Scholz C H. Heterogeneities of the instrumental seismicity catalog (1904−1980) for strong shallow earthquakes[J]. Bulletin of the Seismological Society of America, 1984, 74(2): 669−686.
|
[27] |
Smit A, Kijko A, Stein A. Probabilistic tsunami hazard assessment from incomplete and uncertain historical catalogues with application to tsunamigenic regions in the Pacific Ocean[J]. Pure and Applied Geophysics, 2017, 174(8): 3065−3081. doi: 10.1007/s00024-017-1564-4
|
[28] |
Zúñiga F R, Wyss M. Inadvertent changes in magnitude reported in earthquake catalogs: their evaluation through b-value estimates[J]. Bulletin of the Seismological Society of America, 1995, 85(6): 1858−1866. doi: 10.1785/BSSA0850061858
|
[29] |
Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185−188. doi: 10.1785/BSSA0340040185
|
[30] |
Schorlemmer D, Woessner J. Probability of detecting an earthquake[J]. Bulletin of the Seismological Society of America, 2008, 98(5): 2103−2117. doi: 10.1785/0120070105
|
[31] |
Mignan A, Jiang C, Zechar J D, et al. Completeness of the mainland China earthquake catalog and implications for the setup of the China Earthquake Forecast Testing Center[J]. Bulletin of the Seismological Society of America, 2013, 103(2A): 845−859. doi: 10.1785/0120120052
|
[32] |
Mignan A, Werner M J, Wiemer S, et al. Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs[J]. Bulletin of the Seismological Society of America, 2011, 101(3): 1371−1385. doi: 10.1785/0120100223
|
[33] |
Anbazhagan P, Vinod J S, Sitharam T G. Evaluation of seismic hazard parameters for Bangalore region in South India[J]. Disaster Advances, 2010, 3(3): 5−13.
|
[34] |
Kafka A L, Levin S Z. Does the spatial distribution of smaller earthquakes delineate areas where larger earthquakes are likely to occur?[J]. Bulletin of the Seismological Society of America, 2000, 90(3): 724−738. doi: 10.1785/0119990017
|
[35] |
Mulargia F, Gasperini P, Tinti S. A procedure to identify objectively active seismotectonic structures[J]. Bollettino Di Geofisica Teorica ed Applicata, 1987, 29(114): 147−164.
|
[36] |
徐伟进, 高孟潭. 中国大陆及周缘地震目录完整性统计分析[J]. 地球物理学报, 2014, 57(9): 2802−2812. doi: 10.6038/cjg20140907
Xu Jinwei, Gao Mengtan. Statistical analysis of the completeness of earthquake catalogs in China mainland[J]. Chinese Journal of Geophysics, 2014, 57(9): 2802−2812. doi: 10.6038/cjg20140907
|
[37] |
Khan M M, Kumar G K. Statistical completeness analysis of seismic data[J]. Journal of the Geological Society of India, 2018, 91(6): 749−753. doi: 10.1007/s12594-018-0934-6
|
[38] |
Stepp J C. Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard[C]// Proceedings of the International Conference on Microzonazion. Seattle: [s.n.], 1972, 2: 897−910.
|
[39] |
Guzzetti F, Malamud B D, Turcotte D L, et al. Power-law correlations of landslide areas in central Italy[J]. Earth and Planetary Science Letters, 2002, 195(3/4): 169−183.
|
[40] |
Li Changjiang, Ma Tuhua, Zhu Xingsheng, et al. The power-law relationship between landslide occurrence and rainfall level[J]. Geomorphology, 2011, 130(3/4): 221−229.
|
[41] |
Turcotte D L, Malamud B D. Landslides, forest fires, and earthquakes: examples of self-organized critical behavior[J]. Physica A: Statistical Mechanics and its Applications, 2004, 340(4): 580−589.
|
[42] |
Hantson S, Pueyo S, Chuvieco E, et al. Global fire size distribution: from power law to log-normal[J]. International Journal of Wildland Fire, 2016, 25(4): 403−412. doi: 10.1071/WF15108
|
[43] |
Bak P, Tang Chao. Earthquakes as a self-organized critical phenomenon[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11): 15635−15637.
|
[44] |
Bak P, Tang Chao, Wiesenfeld K. Self-organized criticality[J]. Physical Review A, 1988, 38(1): 364−374. doi: 10.1103/PhysRevA.38.364
|
[45] |
程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018, 73(8): 1397−1406. doi: 10.11821/dlxb201808001
Cheng Changxiu, Shi Peijun, Song Changqing, et al. Geographic big-data: a new opportunity for geography complexity study[J]. Acta Geographica Sinica, 2018, 73(8): 1397−1406. doi: 10.11821/dlxb201808001
|