Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Zhang Peixuan,Chen Xiaodong,Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao,2022, 44(7):161–169 doi: 10.12284/hyxb2022114
Citation: Zhang Peixuan,Chen Xiaodong,Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao,2022, 44(7):161–169 doi: 10.12284/hyxb2022114

Research on sea ice thickness identification method based on Hough transform principle

doi: 10.12284/hyxb2022114
  • Received Date: 2021-09-29
  • Rev Recd Date: 2021-12-27
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • Sea ice thickness is one of the main sea ice parameters. Automatic recognition of sea ice thickness in video is a significant component of sea ice parameters extraction. In this paper, the machine vision method based on Hough transform is used to recognize the surface contour of sea ice, so as to obtain the sea ice thickness parameters. According to the characteristics of sea ice image, the overall recognition process is divide into image edge recognition, approximate line segment recognition and sea ice contour segment group recognition. In the process of line segment identification, three parameters of line segment group including angle, length and spacing are established based on the geometric characteristics of sea ice. In order to verify the reliability of the method, this method is applied to analysis the field survey data of Xuelong icebreaker’s eighth Arctic expedition. The results show that the three parameters have the optimal threshold value. When it is lower than this value, increasing the threshold will increase the effective recognition rate; when it is higher than this value, increasing the threshold will increase the false recognition rate. The ice thickness recognition rate can reach more than 90% by using the optimal threshold. Therefore, the ice thickness identification method based on Hough transform can realize the real-time monitoring of sea ice thickness.
  • loading
  • [1]
    Leira B, Børsheim L, Espeland Ø, et al. Ice-load estimation for a ship hull based on continuous response monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223(4): 529−540. doi: 10.1243/14750902JEME141
    [2]
    Wadhams P, Tucker III W B, Krabill W B, et al. Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring[J]. Journal of Geophysical Research: Oceans, 1992, 97(C12): 20325−20334. doi: 10.1029/92JC02014
    [3]
    陈晓东, 崔海鑫, 王安良, 等. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036

    Chen Xiaodong, Cui Haixin, Wang Anliang, et al. Experimental study on sea ice tensile strength based on brazilian tests[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036
    [4]
    毕祥军, 于雷, 王瑞学, 等. 海冰厚度的现场图像测量方法[J]. 冰川冻土, 2005, 27(4): 563−567.

    Bi Xiangjun, Yu Lei, Wang Ruixue, et al. Digitalized image method for measuring sea ice thickness[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 563−567.
    [5]
    孔帅, 崔洪宇, 季顺迎. 船舶结构海冰载荷的实船测量及反演方法研究[J]. 振动与冲击, 2020, 39(20): 8−16.

    Kong Shuai, Cui Hongyu, Ji Shunying. Field measurement and an identification method of sea ice load on ship structures[J]. Journal of Vibration and Shock, 2020, 39(20): 8−16.
    [6]
    李志军. 渤海海冰灾害和人类活动之间的关系[J]. 海洋预报, 2010, 27(1): 8−12. doi: 10.3969/j.issn.1003-0239.2010.01.002

    Li Zhijun. The relations between sea ice disasters and human activities in Bohai Sea[J]. Marine Forecasts, 2010, 27(1): 8−12. doi: 10.3969/j.issn.1003-0239.2010.01.002
    [7]
    孔帅, 陈晓东, 崔洪宇, 等. 船体结构冰载荷的远场识别方法及试验验证[J]. 船舶力学, 2021, 25(7): 869−878. doi: 10.3969/j.issn.1007-7294.2021.07.004

    Kong Shuai, Chen Xiaodong, Cui Hongyu, et al. Far-field ice load identification method of ship structure and experimental verification[J]. Journal of Ship Mechanics, 2021, 25(7): 869−878. doi: 10.3969/j.issn.1007-7294.2021.07.004
    [8]
    张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011.

    Zhang Xi. Research on sea ice thickness detection by polarimetric SAR in Bohai Sea[D]. Qingdao: Ocean University of China, 2011.
    [9]
    Kim J W, Kim D J, Hwang B J. Characterization of arctic sea ice thickness using high-resolution spaceborne polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 13−22. doi: 10.1109/TGRS.2011.2160070
    [10]
    Galley R J, Trachtenberg M, Langlois A, et al. Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice and freshwater ice thickness[J]. Cold Regions Science and Technology, 2009, 57(1): 29−38. doi: 10.1016/j.coldregions.2009.01.003
    [11]
    Shih S E, Ding K H, Nghiem S V, et al. Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1589−1598. doi: 10.1109/36.718862
    [12]
    李志军, 孔祥鹏, 张勇, 等. 近岸堆积冰形成过程的原型调查[J]. 大连海事大学学报, 2009, 35(3): 9−12.

    Li Zhijun, Kong Xiangpeng, Zhang Yong, et al. Field investigations of piled ice forming in coastal area[J]. Journal of Dalian Maritime University, 2009, 35(3): 9−12.
    [13]
    Yuan Shuai, Liu Chengyu, Liu Xueqin. Practical model of sea ice thickness of Bohai Sea based on MODIS data[J]. Chinese Geographical Science, 2018, 28(5): 863−872. doi: 10.1007/s11769-018-0986-y
    [14]
    Su Hua, Wang Yunpeng. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010 winter[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10018.
    [15]
    Han Yanling, Gao Yi, Zhang Yun, et al. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning[J]. Remote Sensing, 2019, 11(18): 2170. doi: 10.3390/rs11182170
    [16]
    陈诗怡, 曹云锋, 惠凤鸣, 等. 基于遥感观测的2010~2017年秋季北极东北航道通航能力时空变化[J]. 科学通报, 2019, 64(14): 1515−1525. doi: 10.1360/N972018-01083

    Chen Shiyi, Cao Yunfeng, Hui Fengming, et al. Observed spatial-temporal changes in the autumn navigability of the Arctic Northeast Route from 2010 to 2017[J]. Chinese Science Bulletin, 2019, 64(14): 1515−1525. doi: 10.1360/N972018-01083
    [17]
    Alexandrov V, Sandven S, Wahlin J, et al. The relation between sea ice thickness and freeboard in the Arctic[J]. The Cryosphere, 2010, 4(3): 373−380. doi: 10.5194/tc-4-373-2010
    [18]
    张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10−18, 24.

    Zhang Run, Wang Yongbin. Research on machine learning with algorithm and development[J]. Journal of Communication University of China (Science and Technology), 2016, 23(2): 10−18, 24.
    [19]
    王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展[J]. 力学进展, 2020, 50(1): 202003. doi: 10.6052/1000-0992-20-007

    Wang Jianwei, Duan Qinglin, Ji Shunying. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation[J]. Advances in Mechanics, 2020, 50(1): 202003. doi: 10.6052/1000-0992-20-007
    [20]
    Sundin E, Makkonen L. Ice loads on a lattice tower estimated by weather station data[J]. Journal of Applied Meteorology and Climatology, 1998, 37(5): 523−529. doi: 10.1175/1520-0450(1998)037<0523:ILOALT>2.0.CO;2
    [21]
    岳前进, 毕祥军, 季顺迎, 等. 航海雷达识别与跟踪海冰试验[J]. 大连理工大学学报, 2000, 40(4): 500−504. doi: 10.3321/j.issn:1000-8608.2000.04.031

    Yue Qianjin, Bi Xiangjun, Ji Shunying, et al. Recognition and tracing of sea ice by marine radar on a fixed oil/gas platform[J]. Journal of Dalian University of Technology, 2000, 40(4): 500−504. doi: 10.3321/j.issn:1000-8608.2000.04.031
    [22]
    李志军, 韩明, 秦建敏, 等. 冰厚变化的现场监测现状和研究进展[J]. 水科学进展, 2005, 16(5): 753−757. doi: 10.3321/j.issn:1001-6791.2005.05.025

    Li Zhijun, Han Ming, Qin Jianmin, et al. States and advances in monitor of ice thickness change[J]. Advances in Water Science, 2005, 16(5): 753−757. doi: 10.3321/j.issn:1001-6791.2005.05.025
    [23]
    Kern S, Khvorostovsky K, Skourup H, et al. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise[J]. The Cryosphere, 2015, 9(1): 37−52. doi: 10.5194/tc-9-37-2015
    [24]
    季顺迎, 陈晓东, 刘煜, 等. 基于油气平台的海冰雷达监测图像处理及冰速测量[J]. 海洋学报, 2013, 35(3): 119−127.

    Ji Shunying, Chen Xiaodong, Liu Yu, et al. Radar digital image technologies for the sea ice field observation based on an oil/gas platform and the measurement of the sea ice velocity[J]. Haiyang Xuebao, 2013, 35(3): 119−127.
    [25]
    石立坚, 施英妮, 王其茂, 等. 水平集方法在卫星遥感图像海冰边缘检测中的应用[J]. 遥感信息, 2015, 30(3): 89−92, 98. doi: 10.3969/j.issn.1000-3177.2015.03.016

    Shi Lijian, Shi Yingni, Wang Qimao, et al. Sea ice edge detection with multiscale levelset method[J]. Remote Sensing Information, 2015, 30(3): 89−92, 98. doi: 10.3969/j.issn.1000-3177.2015.03.016
    [26]
    Alekseeva T, Tikhonov V, Frolov S, et al. Comparison of arctic sea ice concentrations from the NASA team, ASI, and VASIA2 algorithms with summer and winter ship data[J]. Remote Sensing, 2019, 11(21): 2481. doi: 10.3390/rs11212481
    [27]
    杨全银, 魏雅杰, 王欣. 基于Hough变换的线段检测算法[J]. 红外与激光工程, 2009, 38(3): 525−529. doi: 10.3969/j.issn.1007-2276.2009.03.033

    Yang Quanyin, Wei Yajie, Wang Xin. Line segment detection algorithm based on Hough transform[J]. Infrared and Laser Engineering, 2009, 38(3): 525−529. doi: 10.3969/j.issn.1007-2276.2009.03.033
    [28]
    Illingworth J, Kittler J. A survey of the hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87−116. doi: 10.1016/S0734-189X(88)80033-1
    [29]
    崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011

    Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
    [30]
    Jiang T, Merickel M B. Identification and boundary extraction of blobs in complex imagery[J]. Computerized Medical Imaging and Graphics, 1989, 13(5): 369−382. doi: 10.1016/0895-6111(89)90224-3
    [31]
    Helterbrand J D, Davidson J L, Cressie N. Optimal closed boundary identification in gray-scale imagery[J]. Journal of Mathematical Imaging and Vision, 1995, 5(3): 179−205. doi: 10.1007/BF01248371
    [32]
    Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11−15. doi: 10.1145/361237.361242
    [33]
    祁宝英. 运用Hough变换提高直线检测效率[J]. 计算机系统应用, 2012, 21(6): 228−231. doi: 10.3969/j.issn.1003-3254.2012.06.053

    Qi Baoying. Improve efficiency of line detection using Hough transform[J]. Computer Systems & Applications, 2012, 21(6): 228−231. doi: 10.3969/j.issn.1003-3254.2012.06.053
    [34]
    张晰, 张杰, 孟俊敏, 等. 基于极化散射特征的极化合成孔径雷达海冰分类方法研究: 以渤海海冰分类为例[J]. 海洋学报, 2013, 35(5): 95−101.

    Zhang Xi, Zhang Jie, Meng Junmin, et al. Polarimetric scattering characteristics based sea ice types classification by polarimetric synthetic aperture radar: taking sea ice in the Bohai Sea for example[J]. Haiyang Xuebao, 2013, 35(5): 95−101.
    [35]
    楼万翔, 黄迪. 基于 Hough 变换的目标交叉跟踪算法[J]. 舰船电子工程, 2016, 36(9): 35−38. doi: 10.3969/j.issn.1672-9730.2016.09.009

    Lou Wanxiang, Huang Di. Trace intersecting targets tracking based on Hough transform[J]. Ship Electronic Engineering, 2016, 36(9): 35−38. doi: 10.3969/j.issn.1672-9730.2016.09.009
    [36]
    左磊, 李明, 张晓伟, 等. 基于改进Hough变换的海面微弱目标检测[J]. 电子与信息学报, 2012, 34(4): 923−928.

    Zuo Lei, Li Ming, Zhang Xiaowei, et al. Small-target detection in sea clutter based on improved Hough transform[J]. Journal of Electronics & Information Technology, 2012, 34(4): 923−928.
    [37]
    Zhong Youping, Zuo Qi, Zhou Yang, et al. A new image-based algorithm for icing detection and icing thickness estimation for Transmission Lines[C]//2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). San Jose: IEEE, 2013: 1−6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (463) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return