Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Huang Bigui,Li Jiagang,Zhou Qingjie, et al. Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile: Taking the Bohai Sea submarine pipeline route as an example[J]. Haiyang Xuebao,2022, 44(9):156–164 doi: 10.12284/hyxb2022113
Citation: Huang Bigui,Li Jiagang,Zhou Qingjie, et al. Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile: Taking the Bohai Sea submarine pipeline route as an example[J]. Haiyang Xuebao,2022, 44(9):156–164 doi: 10.12284/hyxb2022113

Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile: Taking the Bohai Sea submarine pipeline route as an example

doi: 10.12284/hyxb2022113
  • Received Date: 2021-12-29
  • Rev Recd Date: 2022-04-05
  • Available Online: 2022-05-16
  • Publish Date: 2022-08-29
  • The physical properties of seafloor sediments (less than 1 m), such as particle size, porosity and density, are an important part of marine sedimental research and marine engineering geological analysis. The acquisition of these physical properties is currently based on limited seabed sampling or in-situ testing. The sub-bottom profile is based on the propagation of acoustic signals (frequencies in thousands of Hertz) in sediments to obtain the data that can reflect the sedimentary stratigraphic structure. Some of the acoustic parameters, such as seabed reflection coefficient and wave impedance, are closely related to the physical properties of sediments. How to make full and effective use of the sub-bottom profile data to retrieve the physical property parameters of the seafloor sediments in the profile overlying area is of great scientific significance and application value. Moreover, inversion of the physical properties of sediments based on acoustic properties is a hot research topic at present. Therefore, in this paper, the Biot-Stoll model is used to establish the relationship between the seabed reflection coefficient and the physical properties of the sediments in the study area based on the measured physical parameters of the seafloor sediments from LD 16-3CEPA to LD10-1PAPD routing section of the Bohai Sea. Based on the seabed reflection coefficient calculated from the sub-bottom profile data, the physical property parameters such as porosity, density and mean grain size of the seabed sediment in the study area are retrieved. The porosity, density and mean grain size of the inversion are basically consistent with the measured, and the deviation degree is basically within the range of 20%, indicating that the application of the inversion method in this area is feasible.
  • loading
  • [1]
    何起祥. 中国海洋沉积地质学[M]. 海洋出版社, 2006.

    He Qixiang. Marine Sedimentary Geology of China[M]. Beijing: China Ocean Press, 2006.
    [2]
    朱长歧, 汪稔, 符策简. WR-II型海洋静力触探(SCPT)数据处理系统中的岩土力学分层模型[J]. 岩土力学, 1994, 15(2): 78−88.

    Zhu Changqi, Wang Ren, Fu Cejian. The identification model of soil layer used in type WR-II SCPT data processing system[J]. Rock and Soil Mechanics, 1994, 15(2): 78−88.
    [3]
    Hamilton E L. Elastic properties of marine sediments[J]. Journal of Geophysical Research, 1971, 76(2): 579−604. doi: 10.1029/JB076i002p00579
    [4]
    Berndt C, Bünz S, Clayton T, et al. Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin[J]. Marine and Petroleum Geology, 2004, 21(6): 723−733. doi: 10.1016/j.marpetgeo.2004.02.003
    [5]
    阮爱国, 李家彪, 初凤友, 等. 海底天然气水合物层界面反射AVO数值模拟[J]. 地球物理学报, 2006, 49(6): 1826−1835. doi: 10.3321/j.issn:0001-5733.2006.06.031

    Ruan Aiguo, Li Jiabiao, Chu Fengyou, et al. AVO numerical simulation of gas hydrates reflectors beneath seafloor[J]. Chinese Journal of Geophysics, 2006, 49(6): 1826−1835. doi: 10.3321/j.issn:0001-5733.2006.06.031
    [6]
    Li Xishuang, Liu Baohua, Liu Lejun, et al. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea[J]. Journal of Ocean University of China, 2017, 16(6): 1035−1042. doi: 10.1007/s11802-017-3308-6
    [7]
    Panda S, LeBlanc L R, Schock S G. Sediment classification based on impedance and attenuation estimation[J]. The Journal of the Acoustical Society of America, 1994, 96(5): 3022−3035. doi: 10.1121/1.411266
    [8]
    Kim G Y, Richardson M D, Bibee D L, et al. Sediment types determination using acoustic techniques in the northeastern Gulf of Mexico[J]. Geosciences Journal, 2004, 8(1): 95−103. doi: 10.1007/BF02910282
    [9]
    Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
    [10]
    曹正良, 张叔英, 马在田. BICSQS模型与Biot-Stoll模型海底界面声波反射和散射的比较[J]. 声学学报, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002

    Cao Zhengliang, Zhang Shuying, Ma Zaitian. Comparison of reflections and interface scatterings from BICSQS model and Biot-Stoll model seafloors[J]. Acta Acustica, 2006, 31(5): 389−398. doi: 10.3321/j.issn:0371-0025.2006.05.002
    [11]
    朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017

    Zhu Zuyang, Wang Dong, Zhou Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoil model[J]. Chinese Journal of Geophysics, 2012, 55(1): 180−188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [12]
    陈静, 阎贫, 王彦林, 等. 基于Biot-Stoll模型声速反演中的参数选择——以南海南部沉积物为例[J]. 热带海洋学报, 2012, 31(1): 50−54.

    Chen Jing, Yan Pin, Wang Yanlin, et al. Choice of parameters for Biot-Stoll model-based inversion of sound velocity of seafloor sediments in the southern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(1): 50−54.
    [13]
    王景强, 郭常升, 刘保华, 等. 基于Buckingham模型和Biot-Stoll模型的南沙海域沉积物声速分布特征[J]. 地球学报, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13

    Wang Jingqiang, Guo Changsheng, Liu Baohua, et al. Sound speed distribution of seafloor sediments in Nansha Islands sea based on Buckingham model and Biot-Stoll model[J]. Acta Geoscientica Sinica, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13
    [14]
    陶春辉. 海底沉积物声学原位测试和特性研究[D]. 杭州: 浙江大学, 2005.

    Tao Chunhui. In situ acoustic experiment and properties study in marine sediments[D]. Hangzhou: Zhejiang University, 2005.
    [15]
    陈静, 吕修亚, 陈亮, 等. 基于Chirp数据反演琼州海峡海底沉积物物性[J]. 热带地理, 2017, 37(6): 874−879.

    Chen Jing, Lü Xiuya, Chen Liang, et al. Physical properties of the seabed inversed by Chirp data in the Qiongzhou Strait[J]. Tropical Geography, 2017, 37(6): 874−879.
    [16]
    董太禄. 渤海现代沉积作用与模式的研究[J]. 海洋地质与第四纪地质, 1996, 16(4): 43−53.

    Dong Tailu. Modern sedimentation models in the Bohai Sea[J]. Marine Geology and Quaternary Geology, 1996, 16(4): 43−53.
    [17]
    乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4): 139−147.

    Qiao Shuqing, Shi Xuefa, Wang Guoqing, et al. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea[J]. Haiyang Xuebao, 2010, 32(4): 139−147.
    [18]
    王伟伟, 付元宾, 李树同, 等. 渤海中部表层沉积物分布特征与粒度分区[J]. 沉积学报, 2013, 31(3): 478−485.

    Wang Weiwei, Fu Yuanbin, Li Shutong, et al. Distribution on surface sediment and sedimentary divisions in the middle part of Bohai Sea[J]. Acta Sedimentologica Sinica, 2013, 31(3): 478−485.
    [19]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
    [20]
    Stoll R D. Acoustic waves in saturated sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 19−39.
    [21]
    黄绪德. 计算机在地学中的应用[J]. 物探化探计算技术, 1991, 13(2): 93−97.

    Huang Xude. Computer applications to geoscience[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(2): 93−97.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (541) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return