Citation: | Guo Zehua,Zhai Shikui,Yu Zenghui. Fractionation effect of iron isotope during magmatism and its indication of submarine basalt formation process[J]. Haiyang Xuebao,2022, 44(9):1–12 doi: 10.12284/hyxb2022107 |
[1] |
Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200(1/2): 47−62.
|
[2] |
张宏福, 汤艳杰, 赵新苗, 等. 非传统同位素体系在地幔地球化学研究中的重要性及其前景[J]. 地学前缘, 2007, 14(2): 37−57. doi: 10.3321/j.issn:1005-2321.2007.02.004
Zhang Hongfu, Tang Yanjie, Zhao Xinmiao, et al. Significance and prospective of non-traditional isotopic systems in mantle geochemistry[J]. Earth Science Frontiers, 2007, 14(2): 37−57. doi: 10.3321/j.issn:1005-2321.2007.02.004
|
[3] |
Richter F M, Dauphas N, Teng Fangzhen. Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion[J]. Chemical Geology, 2009, 258(1/2): 92−103.
|
[4] |
朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6): 651−688.
Zhu Xiangkun, Wang Yue, Yan Bin, et al. Developments of non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 651−688.
|
[5] |
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5): 1−28.
Liu Yun. Theory and computational methods of non-traditional stable isotope fractionation[J]. Earth Science Frontiers, 2015, 22(5): 1−28.
|
[6] |
Zhu Dan, Bao Huiming, Liu Yun. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber[J]. Scientific Reports, 2015, 5(1): 17561. doi: 10.1038/srep17561
|
[7] |
Young E D, Manning C E, Schauble E A, et al. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications[J]. Chemical Geology, 2015, 395: 176−195. doi: 10.1016/j.chemgeo.2014.12.013
|
[8] |
Watkins J M, DePaolo D J, Watson E B. Kinetic fractionation of non-traditional stable isotopes by diffusion and crystal growth reactions[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 85−125. doi: 10.2138/rmg.2017.82.4
|
[9] |
Teng Fangzhen, Wang Shuijiong, Moynier F. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes[J]. Science China Earth Sciences, 2019, 62(11): 1702−1715. doi: 10.1007/s11430-019-9520-6
|
[10] |
韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1−44.
Wei Gangjian, Huang Fang, Ma Jinlong, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1−44.
|
[11] |
Schoenberg R, von Blanckenburg F. Modes of planetary-scale Fe isotope fractionation[J]. Earth and Planetary Science Letters, 2006, 252(3/4): 342−359.
|
[12] |
Wang Kun, Moynier F, Dauphas N, et al. Iron isotope fractionation in planetary crusts[J]. Geochimica et Cosmochimica Acta, 2012, 89: 31−45. doi: 10.1016/j.gca.2012.04.050
|
[13] |
Sossi P A, Nebel O, Foden J. Iron isotope systematics in planetary reservoirs[J]. Earth and Planetary Science Letters, 2016, 452: 295−308. doi: 10.1016/j.jpgl.2016.07.032
|
[14] |
Elardo S M, Shahar A, Mock T D, et al. The effect of core composition on iron isotope fractionation between planetary cores and mantles[J]. Earth and Planetary Science Letters, 2019, 513: 124−134. doi: 10.1016/j.jpgl.2019.02.025
|
[15] |
赵新苗, 朱祥坤, 张宏福, 等. Fe同位素在地幔地球化学研究中的应用及进展[J]. 岩石矿物学杂志, 2008, 27(5): 435−440. doi: 10.3969/j.issn.1000-6524.2008.05.008
Zhao Xinmiao, Zhu Xiangkun, Zhang Hongfu, et al. Applications of Fe isotopes to tracing mantle processes[J]. Acta Petrologica et Mineralogica, 2008, 27(5): 435−440. doi: 10.3969/j.issn.1000-6524.2008.05.008
|
[16] |
Shahar A, Young E D, Manning C E. Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration[J]. Earth and Planetary Science Letters, 2008, 268(3/4): 330−338.
|
[17] |
朱祥坤, 孙剑, 王跃. 岩浆过程中铁同位素的地球化学行为[J]. 地球科学与环境学报, 2016, 38(1): 1−10. doi: 10.3969/j.issn.1672-6561.2016.01.001
Zhu Xiangkun, Sun Jian, Wang Yue. Fe isotope geochemistry of magmatic system[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 1−10. doi: 10.3969/j.issn.1672-6561.2016.01.001
|
[18] |
Johnson C, Beard B, Weyer S. High-temperature Fe isotope geochemistry[M]//Iron Geochemistry: An Isotopic Perspective. Cham: Springer, 2020: 85−147.
|
[19] |
Johnson C M, Skulan J L, Beard B L, et al. Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions[J]. Earth and Planetary Science Letters, 2002, 195(1/2): 141−153.
|
[20] |
Welch S A, Beard B L, Johnson C M, et al. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4231−4250. doi: 10.1016/S0016-7037(03)00266-7
|
[21] |
李津, 朱祥坤, 唐索寒. 低温环境下铁同位素分馏的若干重要过程[J]. 岩石矿物学杂志, 2008, 27(4): 305−316. doi: 10.3969/j.issn.1000-6524.2008.04.007
Li Jin, Zhu Xiangkun, Tang Suohan. Fe isotope fractionation during low temperature process[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 305−316. doi: 10.3969/j.issn.1000-6524.2008.04.007
|
[22] |
Hill P S, Schauble E A, Young E D. Effects of changing solution chemistry on Fe3+/Fe2+ isotope fractionation in aqueous Fe–Cl solutions[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6669−6689. doi: 10.1016/j.gca.2010.08.038
|
[23] |
Beard B L, Johnson C M, Cox L, et al. Iron isotope biosignatures[J]. Science, 1999, 285(5435): 1889−1892. doi: 10.1126/science.285.5435.1889
|
[24] |
Dauphas N, Rouxel O. Mass spectrometry and natural variations of iron isotopes[J]. Mass Spectrometry Reviews, 2006, 25(4): 515−550. doi: 10.1002/mas.20078
|
[25] |
何永胜, 胡东平, 朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘, 2015, 22(5): 54−71.
He Yongsheng, Hu Dongping, Zhu Chuanwei. Progress of iron isotope geochemistry in geoscience[J]. Earth Science Frontiers, 2015, 22(5): 54−71.
|
[26] |
Dauphas N, John S G, Rouxel O. Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 415−510. doi: 10.2138/rmg.2017.82.11
|
[27] |
Teng Fangzhen, Dauphas N, Huang Shichun, et al. Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107: 12−26. doi: 10.1016/j.gca.2012.12.027
|
[28] |
Chen Shuo, Niu Yaoling, Guo Pengyuan, et al. Iron isotope fractionation during mid-ocean ridge basalt (MORB) evolution: evidence from lavas on the East Pacific Rise at 10°30′ N and its implications[J]. Geochimica et Cosmochimica Acta, 2019, 267: 227−239. doi: 10.1016/j.gca.2019.09.031
|
[29] |
Sun Pu, Niu Yaoling, Guo Pengyuan, et al. Large iron isotope variation in the eastern Pacific mantle as a consequence of ancient low-degree melt metasomatism[J]. Geochimica et Cosmochimica Acta, 2020, 286: 269−288. doi: 10.1016/j.gca.2020.07.029
|
[30] |
Gleeson M L M, Gibson S A, Williams H M. Novel insights from Fe-isotopes into the lithological heterogeneity of Ocean Island Basalts and plume-influenced MORBs[J]. Earth and Planetary Science Letters, 2020, 535: 116114. doi: 10.1016/j.jpgl.2020.116114
|
[31] |
Williams H M, Peslier A H, McCammon C, et al. Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 435−452.
|
[32] |
Weyer S, Ionov D A. Partial melting and melt percolation in the mantle: the message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259(1/2): 119−133.
|
[33] |
Dauphas N, Craddock P R, Asimow P D, et al. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 255−267.
|
[34] |
Dohmen R, Chakraborty S. Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine[J]. Physics and Chemistry of Minerals, 2007, 34(6): 409−430. doi: 10.1007/s00269-007-0158-6
|
[35] |
Huang F, Chakraborty P, Lundstrom C C, et al. Isotope fractionation in silicate melts by thermal diffusion[J]. Nature, 2010, 464(7287): 396−400. doi: 10.1038/nature08840
|
[36] |
Teng Fangzhen, Dauphas N, Helz R T, et al. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine[J]. Earth and Planetary Science Letters, 2011, 308(3/4): 317−324.
|
[37] |
Wu Hongjie, He Yongsheng, Teng Fangzhen, et al. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary[J]. Geochimica et Cosmochimica Acta, 2018, 222: 671−684. doi: 10.1016/j.gca.2017.11.010
|
[38] |
Lesher C E, Dannberg J, Barfod G H, et al. Iron isotope fractionation at the core-mantle boundary by thermodiffusion[J]. Nature Geoscience, 2020, 13(5): 382−386. doi: 10.1038/s41561-020-0560-y
|
[39] |
Heimann A, Beard B L, Johnson C M. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4379−4396. doi: 10.1016/j.gca.2008.06.009
|
[40] |
Du Dehong, Wang Xiaolei, Yang Tao, et al. Origin of heavy Fe isotope compositions in high-silica igneous rocks: a rhyolite perspective[J]. Geochimica et Cosmochimica Acta, 2017, 218: 58−72. doi: 10.1016/j.gca.2017.09.014
|
[41] |
Du Dehong, Li Weiqiang, Wang Xiaolei, et al. Fe isotopic fractionation during the magmatic-hydrothermal stage of granitic magmatism[J]. Lithos, 2019, 350−351: 105265. doi: 10.1016/j.lithos.2019.105265
|
[42] |
Chen Liemeng, Song Xieyan, Zhu Xiangkun, et al. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: constraints from the Baima mafic layered intrusion, SW China[J]. Chemical Geology, 2014, 380: 97−109. doi: 10.1016/j.chemgeo.2014.04.020
|
[43] |
Williams H M, Prytulak J, Woodhead J D, et al. Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: an example from the Marianas[J]. Geochimica et Cosmochimica Acta, 2018, 226: 224−243. doi: 10.1016/j.gca.2018.02.008
|
[44] |
Chen Yanhong, Niu Yaoling, Duan Meng, et al. Fractional crystallization causes the iron isotope contrast between mid-ocean ridge basalts and abyssal peridotites[J]. Communications Earth & Environment, 2021, 2(1): 1−9.
|
[45] |
Richter M, Nebel O, Schwindinger M, et al. Competing effects of spreading rate, crystal fractionation and source variability on Fe isotope systematics in mid-ocean ridge lavas[J]. Scientific Reports, 2021, 11(1): 4123. doi: 10.1038/s41598-021-83387-7
|
[46] |
Rouxel O, Dobbek N, Ludden J, et al. Iron isotope fractionation during oceanic crust alteration[J]. Chemical Geology, 2003, 202(1/2): 155−182.
|
[47] |
Berglund M, Wieser M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397−410. doi: 10.1351/PAC-REP-10-06-02
|
[48] |
秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151−161.
Qin Yan, Xu Yanming, Hou Kejun, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151−161.
|
[49] |
Dauphas N, Cook D L, Sacarabany A, et al. Iron 60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula[J]. The Astrophysical Journal, 2008, 686(1): 560−569. doi: 10.1086/589959
|
[50] |
Tang Haolan, Dauphas N. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk[J]. Earth and Planetary Science Letters, 2012, 359−360: 248−263. doi: 10.1016/j.jpgl.2012.10.011
|
[51] |
朱祥坤, 李志红, 赵新苗, 等. 铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志, 2008, 27(4): 263−272. doi: 10.3969/j.issn.1000-6524.2008.04.001
Zhu Xiangkun, Li Zhihong, Zhao Xinmiao, et al. High-precision measurements of Fe isotopes using MC-ICP-MS and Fe isotope compositions of geological reference materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 263−272. doi: 10.3969/j.issn.1000-6524.2008.04.001
|
[52] |
Craddock P R, Dauphas N. Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 101−123. doi: 10.1111/j.1751-908X.2010.00085.x
|
[53] |
Beard B L, Johnson C M. High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1653−1660.
|
[54] |
Williams H M, McCammon C A, Peslier A H, et al. Iron isotope fractionation and the oxygen fugacity of the mantle[J]. Science, 2004, 304(5677): 1656−1659. doi: 10.1126/science.1095679
|
[55] |
Teng Fangzhen, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake[J]. Science, 2008, 320(5883): 1620−1622. doi: 10.1126/science.1157166
|
[56] |
Williams H M, Bizimis M. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts[J]. Earth and Planetary Science Letters, 2014, 404: 396−407. doi: 10.1016/j.jpgl.2014.07.033
|
[57] |
Craddock P R, Warren J M, Dauphas N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth[J]. Earth and Planetary Science Letters, 2013, 365: 63−76. doi: 10.1016/j.jpgl.2013.01.011
|
[58] |
Niu Yaoling, Wilson M, Humphreys E R, et al. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML)[J]. Episodes, 2012, 35(2): 310−327. doi: 10.18814/epiiugs/2012/v35i2/002
|
[59] |
Dauphas N, Roskosz M, Alp E E, et al. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust[J]. Earth and Planetary Science Letters, 2014, 398: 127−140. doi: 10.1016/j.jpgl.2014.04.033
|
[60] |
Dauphas N, Pourmand A, Teng Fangzhen. Routine isotopic analysis of iron by HR-MC-ICPMS: how precise and how accurate?[J]. Chemical Geology, 2009, 267(3/4): 175−184.
|
[61] |
Polyakov V B, Mineev S D. The use of Mössbauer spectroscopy in stable isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 849−865. doi: 10.1016/S0016-7037(99)00329-4
|
[62] |
Polyakov V B, Clayton R N, Horita J, et al. Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3833−3846. doi: 10.1016/j.gca.2007.05.019
|
[63] |
Schuessler J A, Schoenberg R, Behrens H, et al. The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 417−433. doi: 10.1016/j.gca.2006.09.012
|
[64] |
Schoenberg R, Marks M A W, Schuessler J A, et al. Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland[J]. Chemical Geology, 2009, 258(1/2): 65−77.
|
[65] |
Canil D, O'Neill H S C, Pearson D G, et al. Ferric iron in peridotites and mantle oxidation states[J]. Earth and Planetary Science Letters, 1994, 123(1/3): 205−220.
|
[66] |
He Yongsheng, Meng Xunan, Ke Shan, et al. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle[J]. Earth and Planetary Science Letters, 2019, 512: 175−183. doi: 10.1016/j.jpgl.2019.02.009
|
[67] |
Sossi P A, O’Neill H S C. The effect of bonding environment on iron isotope fractionation between minerals at high temperature[J]. Geochimica et Cosmochimica Acta, 2017, 196: 121−143. doi: 10.1016/j.gca.2016.09.017
|
[68] |
Zhao Xinmiao, Zhang Hongfu, Zhu Xiangkun, et al. Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism[J]. Contributions to Mineralogy and Petrology, 2010, 160(1): 1−14. doi: 10.1007/s00410-009-0461-y
|
[69] |
Beard B L, Johnson C M. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4727−4743. doi: 10.1016/j.gca.2004.04.023
|
[70] |
Williams H M, Nielsen S G, Renac C, et al. Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks[J]. Earth and Planetary Science Letters, 2009, 283(1/4): 156−166.
|
[71] |
Zhao Xinmiao, Cao Huihui, Mi Xue, et al. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism[J]. Contributions to Mineralogy and Petrology, 2017, 172(6): 1−26. doi: 10.1007/s00410-017-1356-y
|
[72] |
Nebel O, Sossi P A, Bénard A, et al. Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes[J]. Earth and Planetary Science Letters, 2019, 521: 60−67. doi: 10.1016/j.jpgl.2019.05.037
|
[73] |
Konter J G, Pietruszka A J, Hanan B B, et al. Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle[J]. Earth and Planetary Science Letters, 2016, 450: 221−232. doi: 10.1016/j.jpgl.2016.06.029
|
[74] |
Poitrasson F, Halliday A N, Lee D C, et al. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Earth and Planetary Science Letters, 2004, 223(3/4): 253−266.
|
[75] |
Weyer S, Anbar A D, Brey G P, et al. Iron isotope fractionation during planetary differentiation[J]. Earth and Planetary Science Letters, 2005, 240(2): 251−264. doi: 10.1016/j.jpgl.2005.09.023
|
[76] |
Poitrasson F, Freydier R. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222(1/2): 132−147.
|
[77] |
Telus M, Dauphas N, Moynier F, et al. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: the tale from migmatites, granitoids, and pegmatites[J]. Geochimica et Cosmochimica Acta, 2012, 97: 247−265. doi: 10.1016/j.gca.2012.08.024
|
[78] |
Simon A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environments[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4905−4914. doi: 10.1016/j.gca.2004.05.033
|
[79] |
Sossi P A, Foden J D, Halverson G P. Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania[J]. Contributions to Mineralogy and Petrology, 2012, 164(5): 757−772. doi: 10.1007/s00410-012-0769-x
|
[80] |
Schuessler J A, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation[J]. Chemical Geology, 2009, 258(1/2): 78−91.
|
[81] |
Richter F M, Watson E B, Mendybaev R, et al. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4250−4263. doi: 10.1016/j.gca.2009.04.011
|
[82] |
Lundstrom C. Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining[J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5709−5729. doi: 10.1016/j.gca.2009.06.020
|
[83] |
Zambardi T, Lundstrom C C, Li Xiaoxiao, et al. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation[J]. Earth and Planetary Science Letters, 2014, 405: 169−179. doi: 10.1016/j.jpgl.2014.08.020
|
[84] |
Mills R, Harris K R. The effect of isotopic substitution on diffusion in liquids[J]. Chemical Society Reviews, 1976, 5(2): 215−231.
|
[85] |
Foden J, Sossi P A, Wawryk C M. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite[J]. Lithos, 2015, 212−215: 32−44. doi: 10.1016/j.lithos.2014.10.015
|
[86] |
Roskosz M, Sio C K I, Dauphas N, et al. Spinel-olivine-pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites[J]. Geochimica et Cosmochimica Acta, 2015, 169: 184−199. doi: 10.1016/j.gca.2015.07.035
|
[87] |
Staudigel H, Hart S R. Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 337−350. doi: 10.1016/0016-7037(83)90257-0
|
[88] |
Staudigel H, Plank T, White B, et al. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418[J]. Subduction: Top to Bottom, 1996, 96: 19−38.
|
[89] |
Alt J C, Teagle D A H. The uptake of carbon during alteration of ocean crust[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527−1535. doi: 10.1016/S0016-7037(99)00123-4
|
[90] |
Wheat C G, Mottl M J. Composition of pore and spring waters from Baby Bare: global implications of geochemical fluxes from a ridge flank hydrothermal system[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 629−642. doi: 10.1016/S0016-7037(99)00347-6
|
[91] |
Alt J C. Subseafloor processes in mid-ocean ridge hydrothermal systems[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Volume 91. Washington: American Geophysical Union, 1995: 85−114.
|
[92] |
Honnorez J. The aging of the oceanic crust at low temperature[J]. The Oceanic Lithosphere, 1981: 525−587.
|
[93] |
Liu Yang, Spicuzza M J, Craddock P R, et al. Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6249−6262. doi: 10.1016/j.gca.2010.08.008
|
[94] |
Polyakov V B. Equilibrium iron isotope fractionation at core-mantle boundary conditions[J]. Science, 2009, 323(5916): 912−914. doi: 10.1126/science.1166329
|
[95] |
Williams H M, Wood B J, Wade J, et al. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion[J]. Earth and Planetary Science Letters, 2012, 321−322: 54−63. doi: 10.1016/j.jpgl.2011.12.030
|
[96] |
Weyer S, Seitz H M. Coupled lithium- and iron isotope fractionation during magmatic differentiation[J]. Chemical Geology, 2012, 294−295: 42−50. doi: 10.1016/j.chemgeo.2011.11.020
|
[97] |
Dauphas N, Teng Fangzhen, Arndt N T. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3274−3291. doi: 10.1016/j.gca.2010.02.031
|
[98] |
Zhao Xinmiao, Zhang Hongfu, Zhu Xiangkun, et al. Iron isotope evidence for multistage melt-peridotite interactions in the lithospheric mantle of eastern China[J]. Chemical Geology, 2012, 292−293: 127−139. doi: 10.1016/j.chemgeo.2011.11.016
|
[99] |
Huang Fang, Zhang Zhaofeng, Lundstrom C C, et al. Iron and magnesium isotopic compositions of peridotite xenoliths from eastern China[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3318−3334. doi: 10.1016/j.gca.2011.03.036
|
[100] |
Hibbert K E J, Williams H M, Kerr A C, et al. Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present[J]. Earth and Planetary Science Letters, 2012, 321−322: 198−207. doi: 10.1016/j.jpgl.2012.01.011
|
[101] |
Poitrasson F, Delpech G, Grégoire M. On the iron isotope heterogeneity of lithospheric mantle xenoliths: implications for mantle metasomatism, the origin of basalts and the iron isotope composition of the Earth[J]. Contributions to Mineralogy and Petrology, 2013, 165(6): 1243−1258. doi: 10.1007/s00410-013-0856-7
|
[102] |
Beard B L, Johnson C M, Skulan J L, et al. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1/4): 87−117.
|
[103] |
Peters B J, Shahar A, Carlson R W, et al. A sulfide perspective on iron isotope fractionation during ocean island basalt petrogenesis[J]. Geochimica et Cosmochimica Acta, 2019, 245: 59−78. doi: 10.1016/j.gca.2018.10.015
|
[104] |
Nebel O, Sossi P A, Bénard A, et al. Redox-variability and controls in subduction zones from an iron-isotope perspective[J]. Earth and Planetary Science Letters, 2015, 432: 142−151. doi: 10.1016/j.jpgl.2015.09.036
|
[105] |
Nebel O, Sossi P A, Foden J, et al. Iron isotope variability in ocean floor lavas and mantle sources in the Lau back-arc basin[J]. Geochimica et Cosmochimica Acta, 2018, 241: 150−163. doi: 10.1016/j.gca.2018.08.046
|