Citation: | Zou Dapeng,Wu Zhilin,Sun Han, et al. Basic geoacoustic structure and geoacoustic model for seafloor sediments[J]. Haiyang Xuebao,2022, 44(9):145–155 doi: 10.12284/hyxb2022091 |
[1] |
李梦竹, 李整林, 李倩倩. 南海北部负跃层环境下海底参数声学反演[J]. 声学学报, 2019, 44(3): 321−328.
Li Mengzhu, Li Zhenglin, Li Qianqian. Geoacoustic inversion for bottom parameters in a thermocline environment in the northern area of the South China Sea[J]. Acta Acustica, 2019, 44(3): 321−328.
|
[2] |
Belcourt J, Holland C W, Dosso S E, et al. Depth-dependent geoacoustic inferences with dispersion at the New England mud patch via reflection coefficient inversion[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): 69−91. doi: 10.1109/JOE.2019.2900115
|
[3] |
任群言, 朴胜春, 马力, 等. 利用渔船噪声矢量场对地声参数的估计[J]. 哈尔滨工程大学学报, 2018, 39(2): 236−240.
Ren Qunyan, Piao Shengchun, Ma Li, et al. Geoacoustic inversion using ship noise vector field[J]. Journal of Harbin Engineering University, 2018, 39(2): 236−240.
|
[4] |
杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法[J]. 物理学报, 2009, 58(3): 1798−1805. doi: 10.3321/j.issn:1000-3290.2009.03.066
Yang Kunde, Ma Yuanliang. A geoacoustic inversion method based on bottom reflection signals[J]. Acta Physica Sinica, 2009, 58(3): 1798−1805. doi: 10.3321/j.issn:1000-3290.2009.03.066
|
[5] |
Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
|
[6] |
吴金荣, 马力, 郭圣明. 基于地声模型的浅海混响地声反演研究[J]. 哈尔滨工程大学学报, 2010, 51(7): 856−862. doi: 10.3969/j.issn.1006-7043.2010.07.007
Wu Jinrong, Ma Li, Guo Shengming. Geoacoustic inversion of reverberation data by applying a geoacoustic model in shallow water[J]. Journal of Harbin Engineering University, 2010, 51(7): 856−862. doi: 10.3969/j.issn.1006-7043.2010.07.007
|
[7] |
李风华, 张仁和. 由脉冲波形与传播损失反演海底声速与衰减系数[J]. 声学学报, 2000, 25(4): 297−302. doi: 10.3321/j.issn:0371-0025.2000.04.002
Li Fenghua, Zhang Renhe. Bottom sound speed and attenuation inverted by using pulsed waveform and transmission loss[J]. Acta Acustica, 2000, 25(4): 297−302. doi: 10.3321/j.issn:0371-0025.2000.04.002
|
[8] |
尚尔昌. 水声学中地声反演的新进展[J]. 应用声学, 2019, 38(4): 468−476. doi: 10.11684/j.issn.1000-310X.2019.04.001
Shang Erchang. Progress of geoacoustic inversion in underwater acoustics[J]. Journal of Applied Acoustics, 2019, 38(4): 468−476. doi: 10.11684/j.issn.1000-310X.2019.04.001
|
[9] |
周志愚, 杜继川, 赵广存, 等. 南海、黄海海底声速垂直分布的测量结果[J]. 海洋学报, 1983, 5(5): 543−552.
Zhou Zhiyu, Du Jichuan, Zhao Guangcun, et al. Measurement results of vertical distribution of sound velocity on the seabed of the South China Sea and the Yellow Sea[J]. Haiyang Xuebao, 1983, 5(5): 543−552.
|
[10] |
Buckingham M J. Wave speed and attenuation profiles in a stratified marine sediment: Geo-acoustic modeling of seabed layering using the viscous grain shearing theory[J]. The Journal of the Acoustical Society of America, 2020, 148(2): 962−974. doi: 10.1121/10.0001778
|
[11] |
Stoll R D, Bautista E O. Using the Biot theory to establish a baseline geoacoustic model for seafloor sediments[J]. Continental Shelf Research, 1998, 18(14/15): 1839−1857.
|
[12] |
邹大鹏, 阎贫, 卢博. 基于海底表层沉积物声速特征的南海地声模型[J]. 海洋学报, 2012, 34(3): 80−86.
Zou Dapeng, Yan Pin, Lu Bo. A geoacoustic model based on sound speed characteristic of seafloor surface sediments of the South China Sea[J]. Haiyang Xuebao, 2012, 34(3): 80−86.
|
[13] |
Hamilton E L. Geoacoustic modeling of the sea floor[J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1313−1340. doi: 10.1121/1.385100
|
[14] |
Hamilton E L. Variations of density and porosity with depth in deep-sea sediments[J]. Journal of Sedimentary Petrology, 1976, 46(2): 280−300.
|
[15] |
卢博. 海水−沉积物声速结构模式[J]. 海洋通报, 1995, 14(2): 42−47.
Lu Bo. Model of sound velocity structure in seawater-sediments[J]. Marine Science Bulletin, 1995, 14(2): 42−47.
|
[16] |
P. Sanko, C. Lair. 中国南海的岩心分析和海底照片[J]. 海洋通报, 1975, 21(3): 1−59.
P. Sanko, C. Lair. Core analysis and seafloor photographs of the South China Sea[J]. Marine Science Bulletin, 1975, 21(3): 1−59.
|
[17] |
Wang Jingqiang, Guo Changsheng, Hou Zhengyu, et al. Distributions and vertical variation patterns of sound speed of surface sediments in South China Sea[J]. Journal of Asian Earth Sciences, 2014, 89: 46−53. doi: 10.1016/j.jseaes.2014.03.026
|
[18] |
唐诚, 郑向阳, 李艳芳, 等. 北部湾南部重力柱状样的MSCL地声学性质测量及分析[J]. 海洋科学, 2019, 43(10): 88−95.
Tang Cheng, Zheng Xiangyang, Li Yanfang, et al. Geoacoustic properties measurement and analysis of gravity cores using MSCL in the southern Beibu Gulf[J]. Marine Sciences, 2019, 43(10): 88−95.
|
[19] |
钱正明. 台湾东南外海海底沉积物物理、土力学和声学特性研究[D]. 台北: 台湾大学, 1989.
Qian Zhengming. Study on physical, soil mechanics and acoustic characteristics of seafloor sediments off the southeast coast of Taiwan[D] Taipei: Taiwan University, 1989.
|
[20] |
Li Guanbao, Wang Jingqiang, Liu Baohua, et al. In situ acoustic properties of fine-grained sediments on the northern continental slope of the South China Sea[J]. Ocean Engineering, 2020, 218: 108244. doi: 10.1016/j.oceaneng.2020.108244
|
[21] |
Kim G Y, Park K J, Lee G S, et al. KISAP: a new in situ seafloor velocity measurement tool[J]. Marine Georesources & Geotechnology, 2018, 36(3): 264−270.
|
[22] |
Ballard M S, Lee K M, McNeese A R, et al. In situ measurements of compressional wave speed during gravity coring operations in the new England mud patch[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): 26−38. doi: 10.1109/JOE.2019.2924560
|
[23] |
Yang Jie, Jackson D R. Measurement of sound speed in fine-grained sediments during the seabed characterization experiment[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): 39−50. doi: 10.1109/JOE.2019.2946004
|
[24] |
韦海伦, 蔡进功, 王国力, 等. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024−1033. doi: 10.11867/j.issn.1001-8166.2018.10.1024.
Wei Hailun, Cai Jingong, Wang Guoli, et al. The diversity of organic matter in marine sediments and the suspiciousness of source parameters: a review[J]. Advances in Earth Science, 2018, 33(10): 1024−1033. doi: 10.11867/j.issn.1001-8166.2018.10.1024.
|
[25] |
段晓勇, 孔祥淮, 印萍, 等. 全球海洋地球化学调查进展[J]. 海洋地质前沿, 2020, 36(7): 1−10.
Duan Xiaoyong, Kong Xianghuai, Yin Ping, et al. A progress review of the marine geochemical survey in the world[J]. Marine Geology Frontiers, 2020, 36(7): 1−10.
|
[26] |
赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7): 769-780.
Zhao Shaohua, Liu Zhifei. A study of pretreatment methods for terrigenous grain-size analysis of marine sediments[J]Advances in Earth Science, 2017, 32(7): 769−780.
|
[27] |
郑广赢, 黄益旺, 华健. 声波在水−含气沉积物界面的反射[J]. 声学学报, 2018, 43(6): 961−967.
Zheng Guangying, Huang Yiwang, Hua Jian. Reflection of acoustic waves at a water-gassy sediment interface[J]. Acta Acustica, 2018, 43(6): 961−967.
|
[28] |
张正一, 范建柯, 白永良, 等. 中国海−西太平洋地区典型剖面的重−磁−震联合反演研究[J]. 地球物理学报, 2018, 61(7): 2871−2891.
Zhang Zhengyi, Fan Jianke, Bai Yongliang, et al. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area[J]. Chinese Journal of Geophysics, 2018, 61(7): 2871−2891.
|
[29] |
Zimmer M A, Bibee L D, Richardson M D. Measurement of the frequency dependence of the sound speed and attenuation of seafloor sands from 1 to 400 kHz[J]. IEEE Journal of Oceanic Engineering, 2010, 35(3): 538−557. doi: 10.1109/JOE.2010.2056230
|
[30] |
Yu Shengqi, Liu Baohua, Yu Kaiben, et al. Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5−3 kHz and 90−170 kHz[J]. China Ocean Engineering, 2017, 31(1): 103−113. doi: 10.1007/s13344-017-0013-6
|
[31] |
Hefner B T, Jackson D R, Williams K L, et al. Mid- to high-frequency acoustic penetration and propagation measurements in a sandy sediment[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 372−387. doi: 10.1109/JOE.2009.2028410
|
[32] |
陶春辉, 王东, 金翔龙, 等. 海底沉积物声学特性和原位测试技术[M]. 北京: 海洋出版社, 2006.
Tao Chunhui, Wang Dong, Jin Xianglong, et al. Marine Sediments Properties and in Situ Acoustic Measurements[M]. Beijing: China Ocean Press, 2006.
|
[33] |
侯正瑜, 郭常升, 王景强, 等. 一种新型海底沉积物声学原位测量系统的研制及应用[J]. 地球物理学报, 2015, 58(6): 1976−1984. doi: 10.6038/cjg20150613
Hou Zhengyu, Guo Changsheng, Wang Jingqiang, et al. Development and application of a new type in-situ acoustic measurement system of seafloor sediments[J]. Chinese Journal of Geophysics, 2015, 58(6): 1976−1984. doi: 10.6038/cjg20150613
|
[34] |
王景强, 李官保, 阚光明, 等. 深海海底沉积物声学特性原位测量试验研究[J]. 地球物理学报, 2020, 63(12): 4463−4472. doi: 10.6038/cjg2020N0427
Wang Jingqiang, Li Guanbao, Kan Guangming, et al. Experiment study of the in situ acoustic measurement in seafloor sediments from deep sea[J]. Chinese Journal of Geophysics, 2020, 63(12): 4463−4472. doi: 10.6038/cjg2020N0427
|
[35] |
汪鹏, 钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359−366.
Wang Peng, Zhong Guangfa. Applications of rock physics models to the deep-sea sediment drift at ODP site 1144, northern South China Sea[J]. Advances in Earth Science, 2012, 27(3): 359−366.
|
[36] |
王华, 陶果, 王兵, 等. 多极子随钻声波测井波场模拟与采集模式分析[J]. 地球物理学报, 2009, 52(9): 2402−2409. doi: 10.3969/j.issn.0001-5733.2009.09.027
Wang Hua, Tao Guo, Wang Bing, et al. Wave field simulation and data acquisition scheme analysis for LWD acoustic tool[J]. Chinese Journal of Geophysics, 2009, 52(9): 2402−2409. doi: 10.3969/j.issn.0001-5733.2009.09.027
|
[37] |
Kim G Y, Narantsetseg B, Lee J Y, et al. Physical and geotechnical properties of drill core sediments in the Heuksan Mud Belt off SW Korea[J]. Quaternary International, 2018, 468: 33−48. doi: 10.1016/j.quaint.2017.06.018
|
[38] |
Zou Dapeng, Zeng Ziwen, Kan Guangming, et al. Influence of environmental conditions on the sound velocity ratio of seafloor surficial sediment[J]. Journal of Ocean University of China, 2021, 20(3): 573−580. doi: 10.1007/s11802-021-4628-0
|
[39] |
Kan Guangming, Zou Dapeng, Liu Baohua, et al. Correction for effects of temperature and pressure on sound speed in shallow seafloor sediments[J]. Marine Georesources & Geotechnology, 2019, 37(10): 1217−1226.
|
[40] |
邹大鹏, 吕衡生, 阚光明, 等. 海底表层沉积物声速的环境因素影响特性[J]. 声学学报, 2021, 46(2): 227−236.
Zou Dapeng, Lü Hengsheng, Kan Guangming, et al. Environmental factors affecting acoustic velocity of seafloor surface sediments[J]. Acta Acustica, 2021, 46(2): 227−236.
|
[41] |
Williams K L, Jackson D R, Thorsos E I, et al. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 413−428. doi: 10.1109/JOE.2002.1040928
|
[42] |
Buckingham M J, Richardson M D. On tone-burst measurements of sound speed and attenuation in sandy marine sediments[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 429−453. doi: 10.1109/JOE.2002.1040929
|
[43] |
Williams K L. An effective density fluid model for acoustic propagation in sediments derived from Biot theory[J]. The Journal of the Acoustical Society of America, 2001, 110(5): 2276−2281. doi: 10.1121/1.1412449
|
[44] |
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
|
[45] |
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179−191. doi: 10.1121/1.1908241
|
[46] |
Hamilton E L. Prediction of in-situ acoustic and elastic properties of marine sediments[J]. Geophysics, 1971, 36(2): 266−284. doi: 10.1190/1.1440168
|