Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Zhang Chi,Wang Jinsong,Yang Jinlong, et al. Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus[J]. Haiyang Xuebao,2022, 44(4):95–103 doi: 10.12284/hyxb2022090
Citation: Zhang Chi,Wang Jinsong,Yang Jinlong, et al. Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus[J]. Haiyang Xuebao,2022, 44(4):95–103 doi: 10.12284/hyxb2022090

Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus

doi: 10.12284/hyxb2022090
  • Received Date: 2021-11-10
  • Rev Recd Date: 2021-12-27
  • Publish Date: 2022-04-14
  • To investigate the effect of Pseudoalteromonas marina pilZ gene knockout on the biofilm formation and its influence on the settlement and metamorphosis of Mytilus coruscus larvae, ΔpilZ was constructed by homologous recombination, and the changes in bacterial density, biofilm thickness, c-di-GMP level and extracellular polymeric substances (EPS) of ΔpilZ bacteria biofilm were analyzed, as well as the regulation of the settlement and metamorphosis of M. coruscus larvae. The results showed that compared with the wild-type strain, the biofilm formed by ΔpilZ strain significantly increased the biofilm thickness, the number of bacteria, while the contents of β-polysaccharides and proteins in EPS were decreased and the settlement and metamorphosis of M. coruscus larvae were inhibited (p<0.05). There was no significant difference in c-di-GMP level, α-polysaccharide and lipid contents (p>0.05). In conclusion, P. marina pilZ gene knockout can regulate the bacterial biofilm and the content of EPS including β-polysaccharides and proteins contents, then inhibit the settlement and metamorphosis of M. coruscus larvae.
  • loading
  • [1]
    李一峰, 杨金龙, 包卫洋, 等. 人工诱导物影响海洋无脊椎动物幼体附着变态的研究[J]. 海洋科学, 2011, 35(8): 102−107.

    Li Yifeng, Yang Jinlong, Bao Weiyang, et al. A review on artificial inducers influencing larval settlement and metamorphosis of marine invertebrates[J]. Marine Sciences, 2011, 35(8): 102−107.
    [2]
    Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623−633. doi: 10.1038/nrmicro2415
    [3]
    Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271−284. doi: 10.1038/nrmicro.2016.190
    [4]
    Peng Lihua, Liang Xiao, Xu Jiakang, et al. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus[J]. Scientific Reports, 2020, 10(1): 2577. doi: 10.1038/s41598-020-59506-1
    [5]
    Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
    [6]
    Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710. doi: 10.3390/ijms21030710
    [7]
    Hu Xiaomeng, Zhang Junbo, Ding Wenyang, et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition[J]. Biofouling, 2021, 37(8): 911−921. doi: 10.1080/08927014.2021.1981882
    [8]
    蔡雨珊, 张秀坤, 竹攸汀, 等. 海假交替单胞菌(Pseudoalteromonas marina)鞭毛蛋白对生物被膜形成及厚壳贻贝附着的影响[J]. 海洋学报, 2021, 43(4): 75−83.

    Cai Yushan, Zhang Xiukun, Zhu Youting, et al. Effects of Pseudoalteromonas marina flagellin on biofilm formationand settlement of Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(4): 75−83.
    [9]
    Breaker R R. Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6): 867−879. doi: 10.1016/j.molcel.2011.08.024
    [10]
    Matsuyama B Y, Krasteva P V, Baraquet C, et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): E209−E218. doi: 10.1073/pnas.1523148113
    [11]
    Ryjenkov D A, Simm R, Römling U, et al. The PilZ domain is a receptor for the second messenger c-di-GMP: thePilZ domain protein YcgR controls motility in enterobacteria[J]. The Journal of Biological Chemistry, 2006, 281(41): 30310−30314. doi: 10.1074/jbc.C600179200
    [12]
    Baker A E, Diepold A, Kuchma S L, et al. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2016, 198(13): 1837−1846. doi: 10.1128/JB.00196-16
    [13]
    Valentini M, Filloux A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis[J]. Annual Review of Microbiology, 2019, 73: 387−406. doi: 10.1146/annurev-micro-020518-115555
    [14]
    Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101): 279−281. doi: 10.1038/325279a0
    [15]
    Merighi M, Lee V T, Hyodo M, et al. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa[J]. Molecular Microbiology, 2007, 65(4): 876−895. doi: 10.1111/j.1365-2958.2007.05817.x
    [16]
    Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants[J]. Molecular Microbiology, 2003, 48(6): 1511−1524. doi: 10.1046/j.1365-2958.2003.03525.x
    [17]
    Guzzo C R, Salinas R K, Andrade M O, et al. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis[J]. Journal of Molecular Biology, 2009, 393(4): 848−866. doi: 10.1016/j.jmb.2009.07.065
    [18]
    Peng Lihua, Liang Xiao, Guo Xingpan, et al. Complete genome of Pseudoalteromonas marina ECSMB14103, a mussel settlement-inducing bacterium isolated from the East China Sea[J]. Marine Genomics, 2018, 41: 46−49. doi: 10.1016/j.margen.2018.04.001
    [19]
    Wang Pengxia, Yu Zichao, Li Baiyuan, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas[J]. Microbial Cell Factories, 2015, 14: 11. doi: 10.1186/s12934-015-0194-8
    [20]
    Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli[J]. Journal of Bacteriology, 1997, 179(2): 538−540. doi: 10.1128/jb.179.2.538-540.1997
    [21]
    Zeng Zhenshun, Guo Xingpan, Li Baiyuan, et al. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10127−10139. doi: 10.1007/s00253-015-6865-x
    [22]
    Yang Jinlong, Shen Peijing, Liang Xiao, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3): 247−259. doi: 10.1080/08927014.2013.764412
    [23]
    González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
    [24]
    Bobrov A G, Kirillina O, Ryjenkov D A, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis[J]. Molecular Microbiology, 2011, 79(2): 533−551. doi: 10.1111/j.1365-2958.2010.07470.x
    [25]
    Hickman J W, Tifrea D F, Harwood C S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40): 14422−14427. doi: 10.1073/pnas.0507170102
    [26]
    Chua Songlin, Hultqvist L D, Yuan Mingjun, et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation[J]. Nature Protocols, 2015, 10(8): 1165−1180. doi: 10.1038/nprot.2015.067
    [27]
    Whiteley C G, Lee D J. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development[J]. Biotechnology Advances, 2015, 33(1): 124−141. doi: 10.1016/j.biotechadv.2014.11.010
    [28]
    Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J]. Molecular Microbiology, 2004, 53(4): 1123−1134. doi: 10.1111/j.1365-2958.2004.04206.x
    [29]
    Hengge R, Gründling A, Jenal U, et al. Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers[J]. Journal of Bacteriology, 2016, 198(1): 15−26. doi: 10.1128/JB.00331-15
    [30]
    Yoon S H, Waters C M. The ever-expanding world of bacterial cyclic oligonucleotide second messengers[J]. Current Opinion in Microbiology, 2021, 60: 96−103. doi: 10.1016/j.mib.2021.01.017
    [31]
    Omadjela O, Narahari A, Strumillo J, et al. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17856−17861. doi: 10.1073/pnas.1314063110
    [32]
    Richter A M, Possling A, Malysheva N, et al. Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose[J]. Journal of Molecular Biology, 2020, 432(16): 4576−4595. doi: 10.1016/j.jmb.2020.06.006
    [33]
    Lee V T, Matewish J M, Kessler J L, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production[J]. Molecular Microbiology, 2007, 65(6): 1474−1484. doi: 10.1111/j.1365-2958.2007.05879.x
    [34]
    Ghafoor A, Hay I D, Rehm B H A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture[J]. Applied and Environmental Microbiology, 2011, 77(15): 5238−5246. doi: 10.1128/AEM.00637-11
    [35]
    Ryder C, Byrd M, Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6): 644−648. doi: 10.1016/j.mib.2007.09.010
    [36]
    Liang Xiao, Zhang Junbo, Shao Anqi, et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement[J]. International Biodeterioration & Biodegradation, 2021, 165: 105330.
    [37]
    Welker A, Cronenberg T, Zöllner R, et al. Molecular motors govern liquidlike ordering and fusion dynamics of bacterial colonies[J]. Physical Review Letters, 2018, 121(11): 118102. doi: 10.1103/PhysRevLett.121.118102
    [38]
    Bonazzi D, Lo Schiavo V, Machata S, et al. Intermittent pili-mediated forces fluidize Neisseria meningitidis aggregates promoting vascular colonization[J]. Cell, 2018, 174(1): 143−155.e16. doi: 10.1016/j.cell.2018.04.010
    [39]
    O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development[J]. Molecular Microbiology, 1998, 30(2): 295−304. doi: 10.1046/j.1365-2958.1998.01062.x
    [40]
    Semmler A B T, Whitchurch C B, Mattick J S. A re-examination of twitching motility in Pseudomonas aeruginosa[J]. Microbiology, 1999, 145(10): 2863−2873. doi: 10.1099/00221287-145-10-2863
    [41]
    Ward M J, Zusman D R. Regulation of directed motility in Myxococcus xanthus[J]. Molecular Microbiology, 1997, 24(5): 885−893. doi: 10.1046/j.1365-2958.1997.4261783.x
    [42]
    Li Yinuo, Sun Hong, Ma Xiaoyuan, et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5443−5448. doi: 10.1073/pnas.0836639100
    [43]
    Zeng Zhenshun, Guo Xingpan, Cai Xingsheng, et al. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling[J]. Microbial Biotechnology, 2017, 10(6): 1718−1731. doi: 10.1111/1751-7915.12773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (606) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return