Citation: | Zhang Chi,Wang Jinsong,Yang Jinlong, et al. Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus[J]. Haiyang Xuebao,2022, 44(4):95–103 doi: 10.12284/hyxb2022090 |
[1] |
李一峰, 杨金龙, 包卫洋, 等. 人工诱导物影响海洋无脊椎动物幼体附着变态的研究[J]. 海洋科学, 2011, 35(8): 102−107.
Li Yifeng, Yang Jinlong, Bao Weiyang, et al. A review on artificial inducers influencing larval settlement and metamorphosis of marine invertebrates[J]. Marine Sciences, 2011, 35(8): 102−107.
|
[2] |
Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623−633. doi: 10.1038/nrmicro2415
|
[3] |
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271−284. doi: 10.1038/nrmicro.2016.190
|
[4] |
Peng Lihua, Liang Xiao, Xu Jiakang, et al. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus[J]. Scientific Reports, 2020, 10(1): 2577. doi: 10.1038/s41598-020-59506-1
|
[5] |
Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
|
[6] |
Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710. doi: 10.3390/ijms21030710
|
[7] |
Hu Xiaomeng, Zhang Junbo, Ding Wenyang, et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition[J]. Biofouling, 2021, 37(8): 911−921. doi: 10.1080/08927014.2021.1981882
|
[8] |
蔡雨珊, 张秀坤, 竹攸汀, 等. 海假交替单胞菌(Pseudoalteromonas marina)鞭毛蛋白对生物被膜形成及厚壳贻贝附着的影响[J]. 海洋学报, 2021, 43(4): 75−83.
Cai Yushan, Zhang Xiukun, Zhu Youting, et al. Effects of Pseudoalteromonas marina flagellin on biofilm formationand settlement of Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(4): 75−83.
|
[9] |
Breaker R R. Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6): 867−879. doi: 10.1016/j.molcel.2011.08.024
|
[10] |
Matsuyama B Y, Krasteva P V, Baraquet C, et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): E209−E218. doi: 10.1073/pnas.1523148113
|
[11] |
Ryjenkov D A, Simm R, Römling U, et al. The PilZ domain is a receptor for the second messenger c-di-GMP:
|
[12] |
Baker A E, Diepold A, Kuchma S L, et al. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2016, 198(13): 1837−1846. doi: 10.1128/JB.00196-16
|
[13] |
Valentini M, Filloux A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis[J]. Annual Review of Microbiology, 2019, 73: 387−406. doi: 10.1146/annurev-micro-020518-115555
|
[14] |
Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101): 279−281. doi: 10.1038/325279a0
|
[15] |
Merighi M, Lee V T, Hyodo M, et al. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa[J]. Molecular Microbiology, 2007, 65(4): 876−895. doi: 10.1111/j.1365-2958.2007.05817.x
|
[16] |
Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants[J]. Molecular Microbiology, 2003, 48(6): 1511−1524. doi: 10.1046/j.1365-2958.2003.03525.x
|
[17] |
Guzzo C R, Salinas R K, Andrade M O, et al. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis[J]. Journal of Molecular Biology, 2009, 393(4): 848−866. doi: 10.1016/j.jmb.2009.07.065
|
[18] |
Peng Lihua, Liang Xiao, Guo Xingpan, et al. Complete genome of Pseudoalteromonas marina ECSMB14103, a mussel settlement-inducing bacterium isolated from the East China Sea[J]. Marine Genomics, 2018, 41: 46−49. doi: 10.1016/j.margen.2018.04.001
|
[19] |
Wang Pengxia, Yu Zichao, Li Baiyuan, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas[J]. Microbial Cell Factories, 2015, 14: 11. doi: 10.1186/s12934-015-0194-8
|
[20] |
Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli[J]. Journal of Bacteriology, 1997, 179(2): 538−540. doi: 10.1128/jb.179.2.538-540.1997
|
[21] |
Zeng Zhenshun, Guo Xingpan, Li Baiyuan, et al. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10127−10139. doi: 10.1007/s00253-015-6865-x
|
[22] |
Yang Jinlong, Shen Peijing, Liang Xiao, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3): 247−259. doi: 10.1080/08927014.2013.764412
|
[23] |
González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
|
[24] |
Bobrov A G, Kirillina O, Ryjenkov D A, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis[J]. Molecular Microbiology, 2011, 79(2): 533−551. doi: 10.1111/j.1365-2958.2010.07470.x
|
[25] |
Hickman J W, Tifrea D F, Harwood C S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40): 14422−14427. doi: 10.1073/pnas.0507170102
|
[26] |
Chua Songlin, Hultqvist L D, Yuan Mingjun, et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation[J]. Nature Protocols, 2015, 10(8): 1165−1180. doi: 10.1038/nprot.2015.067
|
[27] |
Whiteley C G, Lee D J. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development[J]. Biotechnology Advances, 2015, 33(1): 124−141. doi: 10.1016/j.biotechadv.2014.11.010
|
[28] |
Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J]. Molecular Microbiology, 2004, 53(4): 1123−1134. doi: 10.1111/j.1365-2958.2004.04206.x
|
[29] |
Hengge R, Gründling A, Jenal U, et al. Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers[J]. Journal of Bacteriology, 2016, 198(1): 15−26. doi: 10.1128/JB.00331-15
|
[30] |
Yoon S H, Waters C M. The ever-expanding world of bacterial cyclic oligonucleotide second messengers[J]. Current Opinion in Microbiology, 2021, 60: 96−103. doi: 10.1016/j.mib.2021.01.017
|
[31] |
Omadjela O, Narahari A, Strumillo J, et al. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17856−17861. doi: 10.1073/pnas.1314063110
|
[32] |
Richter A M, Possling A, Malysheva N, et al. Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose[J]. Journal of Molecular Biology, 2020, 432(16): 4576−4595. doi: 10.1016/j.jmb.2020.06.006
|
[33] |
Lee V T, Matewish J M, Kessler J L, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production[J]. Molecular Microbiology, 2007, 65(6): 1474−1484. doi: 10.1111/j.1365-2958.2007.05879.x
|
[34] |
Ghafoor A, Hay I D, Rehm B H A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture[J]. Applied and Environmental Microbiology, 2011, 77(15): 5238−5246. doi: 10.1128/AEM.00637-11
|
[35] |
Ryder C, Byrd M, Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6): 644−648. doi: 10.1016/j.mib.2007.09.010
|
[36] |
Liang Xiao, Zhang Junbo, Shao Anqi, et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement[J]. International Biodeterioration & Biodegradation, 2021, 165: 105330.
|
[37] |
Welker A, Cronenberg T, Zöllner R, et al. Molecular motors govern liquidlike ordering and fusion dynamics of bacterial colonies[J]. Physical Review Letters, 2018, 121(11): 118102. doi: 10.1103/PhysRevLett.121.118102
|
[38] |
Bonazzi D, Lo Schiavo V, Machata S, et al. Intermittent pili-mediated forces fluidize Neisseria meningitidis aggregates promoting vascular colonization[J]. Cell, 2018, 174(1): 143−155.e16. doi: 10.1016/j.cell.2018.04.010
|
[39] |
O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development[J]. Molecular Microbiology, 1998, 30(2): 295−304. doi: 10.1046/j.1365-2958.1998.01062.x
|
[40] |
Semmler A B T, Whitchurch C B, Mattick J S. A re-examination of twitching motility in Pseudomonas aeruginosa[J]. Microbiology, 1999, 145(10): 2863−2873. doi: 10.1099/00221287-145-10-2863
|
[41] |
Ward M J, Zusman D R. Regulation of directed motility in Myxococcus xanthus[J]. Molecular Microbiology, 1997, 24(5): 885−893. doi: 10.1046/j.1365-2958.1997.4261783.x
|
[42] |
Li Yinuo, Sun Hong, Ma Xiaoyuan, et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5443−5448. doi: 10.1073/pnas.0836639100
|
[43] |
Zeng Zhenshun, Guo Xingpan, Cai Xingsheng, et al. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling[J]. Microbial Biotechnology, 2017, 10(6): 1718−1731. doi: 10.1111/1751-7915.12773
|