Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
Xu Dongmei,Shen Feifei,Li Hong, et al. The impact of assimilation of Himawari-8 clear-sky data from the new generation geostationary meteorological satellite on the forecast of super Typhoon Hato[J]. Haiyang Xuebao,2022, 44(3):40–52 doi: 10.12284/hyxb2022087
Citation: Xu Dongmei,Shen Feifei,Li Hong, et al. The impact of assimilation of Himawari-8 clear-sky data from the new generation geostationary meteorological satellite on the forecast of super Typhoon Hato[J]. Haiyang Xuebao,2022, 44(3):40–52 doi: 10.12284/hyxb2022087

The impact of assimilation of Himawari-8 clear-sky data from the new generation geostationary meteorological satellite on the forecast of super Typhoon Hato

doi: 10.12284/hyxb2022087
  • Received Date: 2020-05-13
  • Rev Recd Date: 2020-07-28
  • Publish Date: 2022-03-18
  • Based on the Typhoon Hato in 2017, the Himawari-8 AHI infrared radiance data are assimilated under the clear-sky condition in WRFDA system to investigate its impact on the typhoon forecast. The structure, strength, as well as the track forecasts are also studied for the Typhoon Hato. The results show that the clear-sky assimilation of Himawari-8 infrared radiance data provides obvious increment of cyclonic winds in the typhoon core and an obvious increase of typhoon in background field. Compared with the control experiment without assimilating Himawari-8 AHI infrared radiance data, the experiment that assimilates Himawari-8 AHI data strengthens the wind field of Typhoon Hato, 500 hPa pressure field analysis, and typhoon cyclonic circulation. In addition, the AHI radiance assimilation further improves the forecast of track, minimum sea level pressure, and the maximum wind speed of the Typhoon Hato. The average track error, the precipitation distribution, the root mean square error against the conventional data are also improved.
  • loading
  • [1]
    沈菲菲, 许冬梅, 闵锦忠, 等. 云尺度雷达资料的混合同化对台风“桑美”的数值模拟研究[J]. 海洋学报, 2018, 40(5): 48−61.

    Shen Feifei, Xu Dongmei, Min Jinzhong, et al. Assimilation of radar observations with En3DVAR at cloud-resolving scale for the prediction of Typhoon Saomai[J]. Haiyang Xuebao, 2018, 40(5): 48−61.
    [2]
    沈菲菲, 闵锦忠, 许冬梅, 等. 双多普勒雷达资料同化在飓风“艾克”预报中的应用研究[J]. 海洋学报, 2016, 38(11): 60−72.

    Shen Feifei, Min Jinzhong, Xu Dongmei, et al. Application of assimilating dual doppler radar data in forecast of Hurricane Ike[J]. Haiyang Xuebao, 2016, 38(11): 60−72.
    [3]
    沈菲菲, 闵锦忠, 陈鹏, 等. 多普勒雷达资料同化在台风“桑美”预报中的应用研究[J]. 海洋学报, 2015, 37(3): 25−36.

    Shen Feifei, Min Jinzhong, Chen Peng, et al. Experiments of assimilating doppler radar data in forecast of typhoon Saomai[J]. Haiyang Xuebao, 2015, 37(3): 25−36.
    [4]
    李秋阳, 沈菲菲, 许冬梅, 等. 不同初始场资料对台风“桑美”数值模拟的影响[J]. 气象科技, 2019, 47(3): 460−468.

    Li Qiuyang, Shen Feifei, Xu Dongmei, et al. Influence of different initial fields on numerical simulation of typhoon Saomai[J]. Meteorological Science and Technology, 2019, 47(3): 460−468.
    [5]
    Miyoshi T, Kunii M. Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction[J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64(1): 18408. doi: 10.3402/tellusa.v64i0.18408
    [6]
    Zou X, Qin Zhengkun, Zheng Y. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF[J]. Monthly Weather Review, 2015, 143(7): 2485−2505. doi: 10.1175/MWR-D-14-00223.1
    [7]
    俞兆文, 刘健文, 黄江平, 等. AMSR2微波成像资料同化试验及其对台风预报的影响[J]. 气象海洋水文仪器, 2017, 34(2): 1−8.

    Yu Zhaowen, Liu Jianwen, Huang Jiangping, et al. Assimilation experiment of AMSR2 microwave imaging data and its influence on typhoon forecasting[J]. Meteorological, Hydrological and Marine Instruments, 2017, 34(2): 1−8.
    [8]
    耿晓雯, 闵锦忠, 杨春, 等. FY-4A AGRI辐射率资料偏差特征分析及订正试验[J]. 大气科学, 2020, 44(4): 679−694.

    Geng Xiaowen, Min Jinzhong, Yang Chun, et al. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2020, 44(4): 679−694.
    [9]
    Wang Y, Liu Z, Yang S, et al. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over north China[J]. Journal of Geophysical Research, 2018, 123: 3374−3394.
    [10]
    Honda T, Miyoshi T, Lien G Y, et al. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon soudelor (2015)[J]. Monthly Weather Review, 2018, 146(1): 213−229. doi: 10.1175/MWR-D-16-0357.1
    [11]
    朱文刚. 高光谱大气红外探测器AIRS资料云检测及晴空通道应用技术初步研究[D]. 南京: 南京信息工程大学, 2012.

    Zhu Wengang. Impliment study on hyperspectral atmospheric infrared detectors AIRS cloud detect and clear channels application technology[D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
    [12]
    Goldberg M D, Qu Y, Mcmillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 379−389. doi: 10.1109/TGRS.2002.808307
    [13]
    官莉. 卫星红外超光谱资料及其在云检测、晴空订正和大气廓线反演方面的应用[D]. 南京: 南京信息工程大学, 2005.

    Guan Li. A study on infrared hyperspectral measurements and its applications on cloud detection, cloud-clearing and atmospheric sounding profile[D]. Nanjing: Nanjing University of Information Science & Technology, 2005.
    [14]
    官莉, 王振会. 用空间匹配的MODIS云产品客观确定AIRS云检测[J]. 气象科学, 2007, 27(5): 516−521. doi: 10.3969/j.issn.1009-0827.2007.05.007

    Guan Li, Wang Zhenhui. Objective determination of AIRS cloud mask using co-located MODIS cloud mask[J]. Scientia Meteorologica Sinica, 2007, 27(5): 516−521. doi: 10.3969/j.issn.1009-0827.2007.05.007
    [15]
    Bauer P, Ohring G, Kummerow C, et al. Assimilating satellite observations of clouds and precipitation into NWP models[J]. Bulletin of the American Meteorological Society, 2011, 92(6): ES25−ES28. doi: 10.1175/2011BAMS3182.1
    [16]
    Otkin J A. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event[J]. Journal of Geophysical Research: Atmospheres, 2012, 140(D19): D19203.
    [17]
    Bessho K, Date K, Hayashi M, et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellite[J]. Journal of the Meteorological Society of Japan, 2016, 94(2): 151−183. doi: 10.2151/jmsj.2016-009
    [18]
    Honda T, Kotsuki S, Lien G Y, et al. Assimilation of himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 965−976. doi: 10.1002/2017JD027096
    [19]
    Qin Z, Zou X, Weng F. Impacts of assimilating all or GOES-like AHI infrared channels radiances on QPFs over eastern China[J]. Tellus A: Dynamic Meteorology and Oceanography, 2017, 69(1): 1345265. doi: 10.1080/16000870.2017.1345265
    [20]
    Barker D, Huang Xiangyu, Liu Zhiquan, et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA[J]. Bulletin of the American Meteorological Society, 2012, 93(6): 831−843. doi: 10.1175/BAMS-D-11-00167.1
    [21]
    Ide K, Courtier P, Ghil M, et al. Unified notation for data assimilation: Operational, sequential and variational[J]. Journal of the Meteorological Society of Japan. Ser. II, 1997, 75(1): 181−189.
    [22]
    Zhuge X, Zou X. Test of a modified infrared-only ABI cloud mask algorithm for AHI radiance observations[J]. Journal of Applied Meteorology and Climatology, 2016, 55(11): 2529−2546. doi: 10.1175/JAMC-D-16-0254.1
    [23]
    张涛, 姜立鹏, 师春香, 等. AMSU-A全空辐射率资料同化对台风“天鸽”的预报影响研究[J]. 大气科学学报, 2019, 42(5): 705−714.

    Zhang Tao, Jiang Lipeng, Shi Chunxiang, et al. The impact of AMSU-A all-sky data assimilation on the forecast of super typhoon HATO[J]. Transactions of Atmospheric Sciences, 2019, 42(5): 705−714.
    [24]
    Roberts N M, Lean H W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Monthly Weather Review, 2008, 136(1): 78−97. doi: 10.1175/2007MWR2123.1
    [25]
    王天驹, 齐琳琳, 朱江, 等. HY-2卫星高度计波高资料在集合最优插值同化中的应用研究——以台风“Lipee”为例[J]. 海洋学报, 2017, 39(2): 29−38.

    Wang Tianju, Qi Linlin, Zhu Jiang, et al. Application studies of using HY-2 satellite altimeter wave data in ensemble optimal interpolation method—“Lipee” for instance[J]. Haiyang Xuebao, 2017, 39(2): 29−38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (853) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return