Citation: | Zhao Haiyang,Shen Fang,Sun Xuerong, et al. Remote sensing retrieval of phytoplankton group in the eastern China seas[J]. Haiyang Xuebao,2022, 44(4):153–168 doi: 10.12284/hyxb2022062 |
[1] |
Field C B, Behrenfeld M J, Randerson J T,et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
|
[2] |
Behrenfeld M J. Climate-mediated dance of the plankton[J]. Nature Climate Change, 2014, 4(10): 880−887. doi: 10.1038/nclimate2349
|
[3] |
Le Quéré C, Harrison S P, Prentice I C, et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models[J]. Global Change Biology, 2005, 11(11): 2016−2040.
|
[4] |
Tréguer P, Bowler C, Moriceau B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11(1): 27−37. doi: 10.1038/s41561-017-0028-x
|
[5] |
Nair A, Sathyendranath S, Platt T, et al. Remote sensing of phytoplankton functional types[J]. Remote Sensing of Environment, 2008, 112(8): 3366−3375. doi: 10.1016/j.rse.2008.01.021
|
[6] |
McClain C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 2009, 1(1): 19−42. doi: 10.1146/annurev.marine.010908.163650
|
[7] |
Tilstone G H, Pardo S, Dall’Olmo G, et al. Performance of ocean colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic[J]. Remote Sensing of Environment, 2021, 260: 112444. doi: 10.1016/j.rse.2021.112444
|
[8] |
Kostadinov T S, Cabré A, Vedantham H, et al. Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models[J]. Remote Sensing of Environment, 2017, 190: 162−177. doi: 10.1016/j.rse.2016.11.014
|
[9] |
Bracher A, Bouman H A, Brewin R J W, et al. Obtaining phytoplankton diversity from ocean color: A scientific roadmap for future development[J]. Frontiers in Marine Science, 2017, 4: 55.
|
[10] |
IOCCG. Phytoplankton functional types from space[R]. Dartmouth: International Ocean-Colour Coordinating Group, 2014.
|
[11] |
Mouw C B, Hardman-Mountford N J, Alvain S, et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean[J]. Frontiers in Marine Science, 2017, 4: 41.
|
[12] |
Sun Xuerong, Shen Fang, Liu Dongyan, et al. In situ and satellite observations of phytoplankton size classes in the entire Continental Shelf Sea, China[J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3523−3544. doi: 10.1029/2017JC013651
|
[13] |
李楠, 孙德勇, 环宇, 等. 黄渤海浮游植物种群比吸收光谱的确定及其应用[J]. 光学学报, 2020, 40(6): 060100.
Li Nan, Sun Deyong, Huan Yu, et al. Determination and application of specific absorption spectra of phytoplankton species in Yellow Sea and Bohai Sea[J]. Acta Optica Sinica, 2020, 40(6): 060100.
|
[14] |
O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research:Oceans, 1998, 103(C11): 24937−24953. doi: 10.1029/98JC02160
|
[15] |
Hu Chuanmin, Lee Z, Franz B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference[J]. Journal of Geophysical Research: Oceans, 2012, 117(C1): C010011.
|
[16] |
Xi Hongyan, Losa S N, Mangin A, et al. Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data[J]. Remote Sensing of Environment, 2020, 240: 111704. doi: 10.1016/j.rse.2020.111704
|
[17] |
Bracher A, Xi Hongyan, Dinter T, et al. High resolution water column phytoplankton composition across the Atlantic Ocean from ship-towed vertical undulating radiometry[J]. Frontiers in Marine Science, 2020, 7: 235. doi: 10.3389/fmars.2020.00235
|
[18] |
Cao Zhigang, Ma Ronghua, Duan Hongtao, et al. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes[J]. Remote Sensing of Environment, 2020, 248: 111974. doi: 10.1016/j.rse.2020.111974
|
[19] |
Liu Huizeng, Li Qingquan, Bai Yan, et al. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods[J]. Remote Sensing of Environment, 2021, 256: 112316. doi: 10.1016/j.rse.2021.112316
|
[20] |
Kyryliuk D, Kratzer S. Evaluation of Sentinel-3A OLCI products derived using the case-2 regional coastcolour processor over the Baltic Sea[J]. Sensors, 2019, 19(16): 3609. doi: 10.3390/s19163609
|
[21] |
He X Q, Bai Yan, Pan Delu. , et al. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011)[J]. Biogeosciences, 2013, 10(7): 4721−4739. doi: 10.5194/bg-10-4721-2013
|
[22] |
宋金明. 中国近海生态系统碳循环与生物固碳[J]. 中国水产科学, 2011, 18(3): 703−711.
Song Jinming. Carbon cycling processes and carbon fixed by organisms in China marginal seas[J]. Journal of Fishery Sciences of China, 2011, 18(3): 703−711.
|
[23] |
陈建忠, 葛建忠, Richard B. 东海中部浮游生态系统季节变化的数值模拟[J]. 华东师范大学学报(自然科学版), 2019(6): 153−168.
Chen Jianzhong, Ge Jianzhong, Richard B. Numerical simulation of pelagic ecosystem’s seasonal variation in the central East China Sea[J]. Journal of East China Normal University (Natural Science), 2019(6): 153−168.
|
[24] |
黄邦钦, 肖武鹏, 柳欣. 中国边缘海浮游植物群落时空格局与演变趋势[J]. 厦门大学学报(自然科学版), 2021, 60(2): 390−397.
Huang Bangqin, Xiao Wupeng, Liu Xin. Spatial-temporal distributions and successional patterns of phytoplankton communities in the Chinese marginal seas[J]. Journal of Xiamen University (Natural Science), 2021, 60(2): 390−397.
|
[25] |
Sokoletsky L G, Shen Fang. Optical closure for remote-sensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China[J]. International Journal of Remote Sensing, 2014, 35(11/12): 4193−4224.
|
[26] |
Zhang H K, Roy D P, Yan Lin, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment, 2018, 215: 482−494. doi: 10.1016/j.rse.2018.04.031
|
[27] |
Catlett D, Siegel D A. Phytoplankton pigment communities can be modeled using unique relationships with spectral absorption signatures in a dynamic coastal environment[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 246−264. doi: 10.1002/2017JC013195
|
[28] |
Sun Xuerong, Shen Fang, Brewin Robert J W, et al. Twenty-year variations in satellite-derived chlorophyll a and phytoplankton size in the Bohai Sea and Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8887−8912. doi: 10.1029/2019JC015552
|
[29] |
孙雪融. 东中国海浮游植物粒级结构定量遥感研究[D]. 上海: 华东师范大学, 2021
Sun Xuerong. Remote sensing quantitative retrieval of phytoplankton size classes in eastern China seas[D]. Shanghai: East China Normal University, 2021.
|
[30] |
Mackey M D, Mackey D J, Higgins H W, et al. CHEMTAX—A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton[J]. Marine Ecology Progress Series, 1996, 144(1/3): 265−283.
|
[31] |
Sun Deyong, Lai Wendian, Wang Shengqiang, et al. Synoptic relationships to estimate phytoplankton communities specific to sizes and species from satellite observations in coastal waters[J]. Optics Express, 2019, 27(16): A1156−A1172. doi: 10.1364/OE.27.0A1156
|
[32] |
Donlon C, Berruti B, Buongiorno A, et al. The global monitoring for environment and security (GMES) Sentinel-3 mission[J]. Remote Sensing of Environment, 2012, 120: 37−57. doi: 10.1016/j.rse.2011.07.024
|
[33] |
Brockmann C, Doerffer R, Peters M, et al. Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters[C]// Proceedings of the Living Planet Symposium, [S.l.]: [s.n.], 2016.
|
[34] |
Doerffer R. , Schiller H. The MERIS Case 2 water algorithm[J]. International Journal of Remote Sensing, 2007, 28(3/4): 517−535.
|
[35] |
Steinmetz F, Deschamps P Y, Ramon D. Atmospheric correction in presence of sun glint: application to MERIS[J]. Optics Express, 2011, 19(10): 9783−9800. doi: 10.1364/OE.19.009783
|
[36] |
Steinmetz F, Ramon D. Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER[C]// Proceedings of SPIE 10778 Remote Sensing of the Open and Coastal Ocean and Inland Waters. Washington: SPIE, 2018: 107780E.
|
[37] |
Gordon H R, Wang Menghua. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443−452. doi: 10.1364/AO.33.000443
|
[38] |
Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897−912. doi: 10.1364/AO.39.000897
|
[39] |
Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California: Association for Computing Machinery, 2016: 785−794.
|
[40] |
Tu Qianguang, Hao Zengzhou, Yan Yunwei, et al. Aerosol optical properties around the East China Seas based on AERONET measurements[J]. Atmosphere, 2021, 12(5): 642. doi: 10.3390/atmos12050642
|
[41] |
Zagolski F, Santer R, Aznay O. A new climatology for atmospheric correction based on the aerosol inherent optical properties[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14): D14208. doi: 10.1029/2006JD007496
|
[42] |
Ahmad Z, Franz B A, McClain C R, et al. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans[J]. Applied Optics, 2010, 49(29): 5545−5560. doi: 10.1364/AO.49.005545
|
[43] |
Wang Dian, Ma Ronghua, Xue Kun, et al. The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters[J]. Remote Sensing, 2019, 11(2): 169. doi: 10.3390/rs11020169
|
[44] |
Shen Ming, Duan Hongtao, Cao Zhigang, et al. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3. 2 evaluation[J]. Remote Sensing of Environment, 2020, 247: 111950. doi: 10.1016/j.rse.2020.111950
|
[45] |
Doron M, Bélanger S, Doxaran D, et al. Spectral variations in the near-infrared ocean reflectance[J]. Remote Sensing of Environment, 2011, 115(7): 1617−1631. doi: 10.1016/j.rse.2011.01.015
|
[46] |
自然资源部海洋预警监测司. 2020中国海洋灾害公报[R]. 北京: 自然资源部海洋预警监测司, 2021
Department of Marine Early Warning and Monitoring Ministry of Natural Resources. Bulletin of China marine disater, 2020[R]. Beijing: Department of Marine Early Warning and Monitoring, Ministry of Natural Resources, 2021.
|
[47] |
江杉, 王益澄, 马仁锋. 中国东海叶绿素浓度变化分析及其海水温度响应[J]. 测绘通报, 2020(6): 39−44.
Jiang Shan, Wang Yicheng, Ma Renfeng. Change conalysis of chlorophyll concentration in the East China Sea and its response to seawater temperature[J]. Bulletin of Surveying and Mapping, 2020(6): 39−44.
|
[48] |
陈楠生, 陈阳. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(二): 东海[J]. 海洋与湖沼, 2021, 52(2): 363-38.
Chen Nansheng, Chen Yang. Advances in the study of biodiversity of phytoplankton and red tide species in China (II): the East China Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 363−384.
|
[49] |
田洪阵, 刘沁萍, Goes J I, 等. 基于2002−2018年MODIS数据的黄海叶绿素a时空变化研究[J]. 海洋通报, 2020, 39(1): 101−110.
Tian Hongzhen, Liu Qinping, Goes J I, et al. Temporal and spatial changes in chlorophyll a concentrations in the Yellow Sea from 2002 to 2018 based on MODIS data[J]. Marine Science Bulletin, 2020, 39(1): 101−110.
|