Citation: | Zhang Mengqian,Zhang Jingyan,Ge Hongxing, et al. Preliminary functional study of foxl2 in Portunus trituberculatus and analysis of its related miRNA[J]. Haiyang Xuebao,2022, 44(4):85–94 doi: 10.12284/hyxb2022060 |
[1] |
Cocquet J, Pailhoux E, Jaubert F, et al. Evolution and expression of FOXL2[J]. Journal of Medical Genetics, 2002, 39(12): 916−921. doi: 10.1136/jmg.39.12.916
|
[2] |
De Baere E, Lemercier B, Christin-Maitre S, et al. FOXL2 mutation screening in a large panel of POF patients and XX males[J]. Journal of Medical Genetics, 2002, 39(8): e43−e43. doi: 10.1136/jmg.39.8.e43
|
[3] |
Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome[J]. Nature Genetics, 2001, 27(2): 159−166. doi: 10.1038/84781
|
[4] |
Schmidt D, Ovitt C E, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance[J]. Development, 2004, 131(4): 933−942. doi: 10.1242/dev.00969
|
[5] |
Uda M, Ottolenghi C, Crisponi L, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development[J]. Human Molecular Genetics, 2004, 13(11): 1171−1181. doi: 10.1093/hmg/ddh124
|
[6] |
Uhlenhaut N H, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation[J]. Cell, 2009, 139(6): 1130−1142. doi: 10.1016/j.cell.2009.11.021
|
[7] |
Moumné L, Batista F, Benayoun B A, et al. The mutations and potential targets of the forkhead transcription factor FOXL2[J]. Molecular and Cellular Endocrinology, 2008, 282(1/2): 2−11.
|
[8] |
Baron D, Cocquet J, Xia Xuhua, et al. An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation[J]. Journal of Molecular Endocrinology, 2004, 33(3): 705−715. doi: 10.1677/jme.1.01566
|
[9] |
Wang W C, Lai Y C. Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation[J]. Journal of Ovarian Research, 2014, 7(1): 88.
|
[10] |
Nakamoto M, Matsuda M, Wang Deshou, et al. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes[J]. Biochemical and Biophysical Research Communications, 2006, 344(1): 353−361. doi: 10.1016/j.bbrc.2006.03.137
|
[11] |
Oshima Y, Uno Y, Matsuda Y, et al. Molecular cloning and gene expression of Foxl2 in the frog Rana rugosa[J]. General and Comparative Endocrinology, 2008, 159(2/3): 170−177.
|
[12] |
Shi Bao, Wen H S, He Feng, et al. Association of reproductive performance with SNPs of FOXL2 gene by SSCP in Japanese flounder (Paralichthys olivaceus)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, 153(1): 1−7. doi: 10.1016/j.cbpb.2008.10.007
|
[13] |
Uhlenhaut N H, Treier M. Foxl2 function in ovarian development[J]. Molecular Genetics and Metabolism, 2006, 88(3): 225−234. doi: 10.1016/j.ymgme.2006.03.005
|
[14] |
王雪芹. 稀有鮈鲫Foxl2基因的克隆及内分泌干扰物对其表达的影响[D]. 杨凌: 西北农林科技大学, 2013.
Wang Xueqin. Molecular cloning and characterrization of foxl2 gene and its response to endocrine disrupting chemicals in rare minnow[D]. Yangling: Northwest A&F University, 2013.
|
[15] |
陈玲玲, 冯珊珊, 范祖森, 等. 非编码RNA研究进展[J]. 中国科学: 生命科学, 2019, 49(12): 1573−1605.
Chen Lingling, Feng Shanshan, Fan Zusen, et al. Progress in non-coding RNA research[J]. Science China Life Sciences, 2019, 49(12): 1573−1605.
|
[16] |
贺小云, 刘秋月, 储明星. miRNA调控哺乳动物卵泡发育和卵母细胞成熟的研究进展[J]. 畜牧兽医学报, 2019, 50(11): 2175−2185. doi: 10.11843/j.issn.0366-6964.2019.11.001
He Xiaoyun, Liu Qiuyue, Chu Mingxing. Advances in miRNA regulating mammalian follicular development and oocyte maturation[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(11): 2175−2185. doi: 10.11843/j.issn.0366-6964.2019.11.001
|
[17] |
Zhou Mingcan, Jia Xiwei, Wan Haifu, et al. miR-9 and miR-263 regulate the key genes of the ERK pathway in the ovary of mud crab scylla paramamosain[J]. Marine Biotechnology, 2020, 22(4): 594−606. doi: 10.1007/s10126-020-09981-4
|
[18] |
Wan Haifu, Zhong Jinying, Zhang Ziping, et al. Characterization of the foxl2 gene involved in the vtg expression in mud crab (Scylla paramamosain)[J]. Gene, 2021, 798: 145807. doi: 10.1016/j.gene.2021.145807
|
[19] |
农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版, 2019.
Fisheries Administration of Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook 2019[M]. Beijing: China Agriculture Press, 2019.
|
[20] |
Meng Xianliang, Liu Ping, Jia Fulong, et al. De novo transcriptome analysis of Portunus trituberculatus ovary and testis by RNA-Seq: identification of genes involved in gonadal development[J]. PLoS One, 2015, 10(6): e0128659. doi: 10.1371/journal.pone.0128659
|
[21] |
吴旭干, 姚桂桂, 杨筱珍, 等. 东海三疣梭子蟹第一次卵巢发育规律的研究[J]. 海洋学报, 2007, 29(4): 120−127.
Wu Xugan, Yao Guigui, Yang Xiaozhen, et al. A study on the ovarian development of Portunus trituberculatus in East China Sea during the first reproductive cycle[J]. Acta Oceanologica Sinica, 2007, 29(4): 120−127.
|
[22] |
Liu Xiaoling, Zhang Zhifeng, Shao Mingyu, et al. Sexually dimorphic expression of foxl2 during gametogenesis in scallop Chlamys farreri, conserved with vertebrates[J]. Development Genes and Evolution, 2012, 222(5): 279−286. doi: 10.1007/s00427-012-0410-z
|
[23] |
Wei Huilan, Li Wanru, Liu Tian, et al. Sexual development of the hermaphroditic scallop Argopecten irradians revealed by morphological, endocrine and molecular analysis[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 646754. doi: 10.3389/fcell.2021.646754
|
[24] |
Browdy C L, Samocha T M. The effect of eyestalk ablation on spawning, molting and mating of Penaeus semisulcatus de Haan[J]. Aquaculture, 1985, 49(1): 19−29. doi: 10.1016/0044-8486(85)90187-5
|
[25] |
Uawisetwathana U, Leelatanawit R, Klanchui A, et al. Insights into eyestalk ablation mechanism to induce ovarian maturation in the black tiger shrimp[J]. PloS One, 2011, 6(9): e24427. doi: 10.1371/journal.pone.0024427
|
[26] |
贾复龙, 孟宪亮, 刘萍, 等. 三疣梭子蟹细胞Cdk7基因克隆及其在卵巢发育中的表达[J]. 中国水产科学, 2016, 23(5): 1032−1040.
Jia Fulong, Meng Xianliang, Liu Ping, et al. Cloning and expression analysis of Cdk7, a gene involved in ovarian development, from swimming crab (Portunus trituberculatus)[J]. Journal of Fishery Sciences of China, 2016, 23(5): 1032−1040.
|
[27] |
贾复龙, 孟宪亮, 刘萍, 等. 三疣梭子蟹细胞周期蛋白H基因克隆及其在卵巢发育中的表达分析[J]. 中国海洋大学学报, 2016, 46(7): 62−69.
Jia Fulong, Meng Xianliang, Liu Ping, et al. Clong and expression in the ovarian development of Cyclin H gene of Portunus trituberculatus[J]. Periodical of Ocean University of China, 2016, 46(7): 62−69.
|
[28] |
Meng Xianliang, Zhang Mengqian, Gao Baoquan, et al. Integrative proteomic and microrna analysis: insights into mechanisms of eyestalk ablation-induced ovarian maturation in the swimming crab Portunus trituberculatus[J]. Frontiers in Endocrinology, 2020, 11: 533. doi: 10.3389/fendo.2020.00533
|
[29] |
Song Ya’nan, Shi Lili, Liu Zhiqiang, et al. Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda)[J]. BMC Genomics, 2014, 15(1): 547. doi: 10.1186/1471-2164-15-547
|
[30] |
Jia Xiwei, Fang Zhiqiang, Zeng Xianyuan, et al. Regulation of VIH by miR-277 in the eyestalk of mud crab Scylla paramamosain[J]. Aquaculture, 2021, 534: 736254. doi: 10.1016/j.aquaculture.2020.736254
|
[31] |
张小辉. MiRNA及其合成通路相关基因在三疣梭子蟹性腺发育过程中的功能分析[D]. 上海: 上海海洋大学, 2017.
Zhang Xiaohui. Functional analysis of miRNA and the genes in the miRNA biogenesis pathway in gonadal development of Portunus trituberculatus[D]. Shanghai: Shanghai Ocean University, 2017.
|