Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Yu Shanshan,Li Xueyu,He Zhenping, et al. Physiological responses of juvenile Apostichopus japonicus (Selenka) to collaborative stress of high temperature and low salinity: Growth and induced heat shock protein gene expression[J]. Haiyang Xuebao,2022, 44(2):94–101 doi: 10.12284/hyxb2022058
Citation: Yu Shanshan,Li Xueyu,He Zhenping, et al. Physiological responses of juvenile Apostichopus japonicus (Selenka) to collaborative stress of high temperature and low salinity: Growth and induced heat shock protein gene expression[J]. Haiyang Xuebao,2022, 44(2):94–101 doi: 10.12284/hyxb2022058

Physiological responses of juvenile Apostichopus japonicus (Selenka) to collaborative stress of high temperature and low salinity: Growth and induced heat shock protein gene expression

doi: 10.12284/hyxb2022058
  • Received Date: 2021-08-31
  • Rev Recd Date: 2021-10-15
  • Available Online: 2021-12-21
  • Publish Date: 2022-02-01
  • Under the background of global climate change, the continuous high temperature and low salinity caused by extreme short-time heavy rainfall in summer brings severe challenges to pond culture of Apostichopus japonicus. In order to study the physiological responses of A. japonicus to high temperature and low salinity, the effects of collaborative stress of high temperature and low salt on growth and induced hsp70 and hsp90 expression of juvenile A. japonicus were analyzed in this paper. Four temperature gradients (16℃, 20℃, 24℃, and 28℃) and three salinity gradients (22, 27, and 32) were set, and there were a total of 12 different stress groups. After a period of 40 days stress, the weight gain of juvenile A. japonicus decreased with the increase of temperature and the decrease of salinity, there was negative growth in the high temperature and low salinity group. The expression of induced hsp70 and hsp90 was increased after a long period of stress, thus enhancing the resistance of juveniles to extreme weather. Meanwhile, the expression of induced hsps of juveniles treated with salinity 22 was lower than that in the condition of salinity 27. The results of two-factor ANOVA showed that there was no significant interaction between high temperature and low salinity on specific growth rate and induced hsp70 and hsp90 expression, and salinity had no significant effect on induced hsp70 and hsp90 expression. Therefore, compared with low salinity, high temperature had a greater impact on juvenile A. japonicus, which could be used as the selection pressure in A. japonicus breeding. During the high temperature period, effective measures should be taken to reduce the sea temperature and prevent the stratification of aquaculture water caused by extreme weather. This study enriched the physiological and ecological theories of A. japonicus, provided ideas for the breeding of A. japonicus, and provided certain theoretical basis for guiding the production and practice of A. japonicus culture under extreme weather.
  • loading
  • [1]
    Shao Yina, Li Chenghua, Chen Xiaocong, et al. Metabolomic responses of sea cucumber Apostichopus japonicus to thermal stresses[J]. Aquaculture, 2015, 435: 390−397. doi: 10.1016/j.aquaculture.2014.10.023
    [2]
    Purcell S W, Conand C, Uthicke S, et al. Ecological roles of exploited sea cucumbers[J]. Oceanography and Marine Biology: An Annual Review, 2016, 54: 367−386.
    [3]
    Ding Kui, Zhang Libin, Sun Lina, et al. Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomic, 2019, 30: 143−157.
    [4]
    Huo Da, Sun Lina, Zhang Libin, et al. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus[J]. Journal of Proteomics, 2019, 193: 27−43. doi: 10.1016/j.jprot.2018.12.020
    [5]
    杨红生, 孙景春, 茹小尚, 等. 我国刺参种业态势分析与技术创新展望[J]. 海洋科学, 2020, 44(7): 2−9.

    Yang Hongsheng, Sun Jingchun, Ru Xiaoshang, et al. Current advances and technological prospects of the sea cucumber seed industry in China[J]. Marine Sciences, 2020, 44(7): 2−9.
    [6]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 15-84.

    Fishery Administration of the Ministry of Agriculture and Rural Areas, National Aquatic Technology Promotion Station, China Fisheries Society. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2021: 15−84.
    [7]
    Huo Da, Sun Lina, Zhang Libin, et al. Time course analysis of immunity-related gene expression in the sea cucumber Apostichopus japonicus during exposure to thermal and hypoxic stress[J]. Fish & Shellfish Immunology, 2019, 95: 383−390.
    [8]
    Tian Yi, Shang Yanpeng, Guo Ran, et al. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus[J]. Cell Stress and Chaperones, 2019, 24(4): 719−733.
    [9]
    Yang Hongsheng, Yuan Xiutang, Zhou Yi, et al. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation[J]. Aquaculture Research, 2005, 36(11): 1085−1092. doi: 10.1111/j.1365-2109.2005.01325.x
    [10]
    Wang Qinglin, Yu Shanshan, Dong Yunwei. Parental effect of long acclimatization on thermal tolerance of juvenile sea cucumber Apostichopus japonicus[J]. PLoS One, 2015, 10(11): e0143372. doi: 10.1371/journal.pone.0143372
    [11]
    Liu Shilin, Zhang Sicong, Ru Xiaoshang, et al. Effect of high temperature stress on the fertility of male and female gametes of the sea cucumber Apostichopus japonicus[J]. Aquaculture Research, 2016, 47(10): 3127−3135. doi: 10.1111/are.12763
    [12]
    Yu Haibo, Zhang Cheng, Gao Qinfeng, et al. Impact of water temperature on the growth and fatty acid profiles of juvenile sea cucumber Apostichopus japonicus (Selenka)[J]. Journal of Thermal Biology, 2016, 60: 155−161. doi: 10.1016/j.jtherbio.2016.07.011
    [13]
    Bai Yucen, Chen Yan, Pan Yang, et al. Effect of temperature on growth, energy budget, and physiological performance of green, white, and purple color morphs of sea cucumber, Apostichopus japonicus[J]. Journal of the World Aquaculture Society, 2018, 49(3): 625−637. doi: 10.1111/jwas.12505
    [14]
    Geng Chenfan, Tian Yi, Shang Yanpeng, et al. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus[J]. SpringerPlus, 2016, 5(1): 1977. doi: 10.1186/s40064-016-3620-4
    [15]
    袁秀堂, 杨红生, 周毅, 等. 盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响[J]. 海洋与湖沼, 2006, 37(4): 348−354. doi: 10.3321/j.issn:0029-814X.2006.04.010

    Yuan Xiutang, Yang Hongsheng, Zhou Yi, et al. Salinity effect on respiration and excretion of sea cucumber Apostichopus japonicus (Selenka)[J]. Oceanologia et Limnologia Sinica, 2006, 37(4): 348−354. doi: 10.3321/j.issn:0029-814X.2006.04.010
    [16]
    胡炜, 李成林, 赵斌, 等. 低盐胁迫对刺参存活、摄食和生长的影响[J]. 渔业科学进展, 2012, 33(2): 92−96. doi: 10.3969/j.issn.1000-7075.2012.02.014

    Hu Wei, Li Chenglin, Zhao Bin, et al. Effects of low salinity stress on survival, growth and feeding rate of sea cucumber Apostichopus japonicus[J]. Progress in Fishery Sciences, 2012, 33(2): 92−96. doi: 10.3969/j.issn.1000-7075.2012.02.014
    [17]
    Wang Qinglin, Yu Shanshan, Qin Chuanxin, et al. Combined effects of acute thermal and hypo-osmotic stresses on osmolality and hsp70, hsp90 and sod expression in the sea cucumber Apostichopus japonicus Selenka[J]. Aquaculture International, 2014, 22(3): 1149−1161. doi: 10.1007/s10499-013-9734-6
    [18]
    Song Lin, Li Chao, Xie Yangjie, et al. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection[J]. Fish & Shellfish Immunology, 2016, 49: 154−162.
    [19]
    Morimoto R I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators[J]. Genes & Development, 1998, 12(24): 3788−3796.
    [20]
    Li Jiuxuan, Zhang Haibin, Zhang Xiuyue, et al. Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant's schizothoracin (Schizothorax prenanti)[J]. Fish Physiology and Biochemistry, 2015, 41(2): 573−585. doi: 10.1007/s10695-015-0030-4
    [21]
    Xu Dongxue, Sun Lina, Liu Shilin, et al. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2015, 45(2): 321−326.
    [22]
    Wang Qinglin, Dong Yunwei, Qin Chuanxin, et al. Effects of rearing temperature on growth, metabolism and thermal tolerance of juvenile sea cucumber, Apostichopus japonicus Selenka: critical thermal maximum (CTmax) and hsps gene expression[J]. Aquaculture Research, 2013, 44(10): 1550−1559. doi: 10.1111/j.1365-2109.2012.03162.x
    [23]
    Han Guodong, Cartwright S R, Ganmanee M, et al. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming[J]. Science of the Total Environment, 2019, 647: 763−771. doi: 10.1016/j.scitotenv.2018.08.005
    [24]
    Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change[J]. Science, 2014, 344(6186): 895−898. doi: 10.1126/science.1251336
    [25]
    O’Leary B C, Houghton D C, Van Zant J. Differences in thermal tolerance between two thermally isolated and genetically indistinct populations of Paragnetina Media (Walker) (Plecoptera: Perlodidae)[J]. The Great Lakes Entomologist, 2018, 47(3/4): 101−113.
    [26]
    Hu Meiyan, Li Qi, Li Li. Effect of salinity and temperature on salinity tolerance of the sea cucumber Apostichopus japonicus[J]. Fishery Science, 2010, 76(2): 267−273. doi: 10.1007/s12562-010-0214-x
    [27]
    Eissa N, Wang Hanping, Yao Hong, et al. Expression of hsp70, igf1, and three oxidative stress biomarkers in response to handling and salt treatment at different water temperatures in Yellow Perch, Perca flavescens[J]. Frontiers in Physiology, 2017, 8: 683. doi: 10.3389/fphys.2017.00683
    [28]
    Fang Zhiqiang, Sun Yulong, Zhang Xin, et al. Responses of HSP70 gene to Vibrio parahaemolyticus infection and thermal stress and its transcriptional regulation analysis in Haliotis diversicolor[J]. Molecules, 2019, 24(1): 162. doi: 10.3390/molecules24010162
    [29]
    包鹏云, 周德刚, 蒲红宇. 我国海参池塘养殖存在的问题及应对措施[J]. 科学养鱼, 2011(3): 3−5.

    Bao Pengyun, Zhou Degang, Pu Hongyu. Existing problems and solutions of pond-cultured sea cucumber in China[J]. Scientific Fish Farming, 2011(3): 3−5.
    [30]
    Li Xishan, Liao Guoxiang, Ju Zhonglei, et al. Antioxidant response and oxidative stress in the respiratory tree of sea cucumber (Apostichopus japonicus) following exposure to crude oil and chemical dispersant[J]. Journal of Marine Science and Engineering, 2020, 8(8): 547. doi: 10.3390/jmse8080547
    [31]
    Zhang Libin, Feng Qiming, Sun Lina, et al. Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 25: 34−41. doi: 10.1016/j.cbd.2017.11.001
    [32]
    赵斌, 胡炜, 李成林, 等. 温度和盐度对紫刺参(Apostichopus japonicus Selenta)稚参存活、生长和着色的影响[J]. 海洋与湖沼, 2018, 49(3): 700−706.

    Zhao Bin, Hu Wei, Li Chenglin, et al. Effects of temperature and salinity on survival, growth, and coloration of juvenile Apostichopus japonicus Selenta[J]. Oceanologia et Limnologia Sinica, 2018, 49(3): 700−706.
    [33]
    王欠欠, 杨建敏, 王腾腾, 等. 不同温度下低盐度对仿刺参生长的影响[J]. 海洋湖沼通报, 2018(3): 157−161.

    Wang Qianqian, Yang Jianmin, Wang Tengteng, et al. Effect of low salinity on the growth of sea cucumber Apostichopus japonicus at different temperatures[J]. Transactions of Oceanology and Limnology, 2018(3): 157−161.
    [34]
    Cahan S H, Nguyen A D, Stanton-Geddes J, et al. Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 204: 113−120.
    [35]
    Hupało K, Riss H W, Grabowski M, et al. Climate change as a possible driver of invasion and differential in HSP70 expression in two genetically distinct populations of the invasive killer shrimp, Dikerogammarus villosus[J]. Biological Invasions, 2018, 20(8): 2047−2059. doi: 10.1007/s10530-018-1679-2
    [36]
    Mascaró M, Amaral-Ruiz M, Huipe-Zamora I, et al. Thermal tolerance and phenotypic plasticity in juvenile Hippocampus erectus Perry, 1810: effect of acute and chronic exposure to contrasting temperatures[J]. Journal of Experimental Marine Biology and Ecology, 2016, 483: 112−119. doi: 10.1016/j.jembe.2016.07.005
    [37]
    Machado A, Cardoso C M, Sartorio P V, et al. Lethal thermal maximum temperature induces behavioral responses and protein expressions (Hsp70 and p53) in juvenile common carp (Cyprinus carpio Linnaeus)[J]. Pan-American Journal of Aquatic Sciences, 2017, 12(4): 295−309.
    [38]
    俞丹, 沈中源, 张智, 等. 温度驯化对尖头鳉热耐受特征的影响[J]. 水生生物学报, 2017, 41(3): 538−542. doi: 10.7541/2017.69

    Yu Dan, Shen Zhongyuan, Zhang Zhi, et al. Effect of temperature acclimation on the thermal tolerance of Rhynchocypris oxycephalus[J]. Acta Hydrobiologica Sinica, 2017, 41(3): 538−542. doi: 10.7541/2017.69
    [39]
    Lai J J, Hou P C L, Steinberger Y. Thermal plasticity in the burst swimming of Bufo bankorensis larvae[J]. Ecology and Sustainable Development, 2018, 1(2): 57−68.
    [40]
    Dong Yunwei, Williams G A. Variations in cardiac performance and heat shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore[J]. Marine Biology, 2011, 158(6): 1223−1231. doi: 10.1007/s00227-011-1642-6
    [41]
    Wang Jie, Russell B D, Ding M W, et al. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress[J]. Biogeosciences, 2018, 15(9): 2803−2817. doi: 10.5194/bg-15-2803-2018
    [42]
    Sung Y Y, Liew H J, Bolong A M A, et al. The induction of Hsp70 synthesis by non-lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn)[J]. Aquaculture Research, 2013, 45(10): 1706−1712.
    [43]
    Wali A, Balkhia M H. Heat shock proteins, importance and expression in fishes[J]. European Journal of Biotechnology and Bioscience, 2016, 4(4): 29−35.
    [44]
    Guerriero G, Bassem S M, Khalil W K B, et al. Temperature changes and marine fish species (Epinephelus coioides and Sparus aurata): role of oxidative stress biomarkers in toxicological food studies[J]. Emirates Journal of Food and Agriculture, 2018, 30(3): 205−211.
    [45]
    Finka A, Sood V, Quadroni M, et al. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs[J]. Cell Stress and Chaperones, 2015, 20(4): 605−620. doi: 10.1007/s12192-015-0583-2
    [46]
    董云伟, 董双林. 刺参对温度适应的生理生态学研究进展[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 908−912.

    Dong Yunwei, Dong Shuanglin. Advances of ecological physiology in sea cucumber, Apostichopus japonicus Selenka[J]. Periodical of Ocean University of China, 2009, 39(5): 908−912.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article views (320) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return