Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 6
Jul.  2022
Turn off MathJax
Article Contents
Wu Haowen,Zhao Yanling,Han Guijun, et al. Bathymetry estimation using ensemble adjustment Kalman filter in the numerical simulation of M2 constituent[J]. Haiyang Xuebao,2022, 44(6):10–21 doi: 10.12284/hyxb2022057
Citation: Wu Haowen,Zhao Yanling,Han Guijun, et al. Bathymetry estimation using ensemble adjustment Kalman filter in the numerical simulation of M2 constituent[J]. Haiyang Xuebao,2022, 44(6):10–21 doi: 10.12284/hyxb2022057

Bathymetry estimation using ensemble adjustment Kalman filter in the numerical simulation of M2 constituent

doi: 10.12284/hyxb2022057
  • Received Date: 2021-06-22
  • Rev Recd Date: 2021-09-03
  • Available Online: 2022-02-14
  • Publish Date: 2022-07-13
  • Data assimilation can estimate the uncertain parameters in the numerical model while adjusting the state variables with observations to improve the simulation results through enhancing the numerical model. Based on the ensemble adjustment Kalman filter (EAKF) and the external mode of the Princeton ocean model with generalized coordinate system (POMgcs), a bathymetry estimate is performed in the M2 constituent simulation of the Bohai Sea and part of the Yellow Sea. The results of the ideal data assimilation experiment or identical twin experiment show that the EAKF method can retrieve the “truth” bathymetry. In the practical data assimilation experiment of the NAO.99Jb and tide gauge data, by comparing with the 34 tide gauges, the model simulated amplitude and phase lag errors of M2 constituent are reduced by 40.27% and 49.19%, respectively, by use of the posterior estimate of the bathymetry.
  • loading
  • [1]
    Das S K, Lardner R W. Variational parameter estimation for a two-dimensional numerical tidal model[J]. International Journal for Numerical Methods in Fluids, 1992, 15(3): 313−327. doi: 10.1002/fld.1650150305
    [2]
    Lardner R W, Al-Rabeh A H, Gunay N. Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian Gulf[J]. Journal of Geophysical Research: Oceans, 1993, 98(C10): 18229−18242. doi: 10.1029/93JC01411
    [3]
    朱江, 曾庆存, 郭冬建, 等. 利用伴随算子法从岸边潮位站资料估计近岸模式的开边界条件[J]. 中国科学(D辑: 地球科学), 1998, 41(3): 330−336.

    Zhu Jiang, Zeng Qingcun, Guo Dongjian, et al. Estimating open boundary conditions from coastal tidal observations by adjoint approach[J]. Science in China Series D: Earth Sciences, 1998, 41(3): 330−336.
    [4]
    吕咸青, 张杰. 如何利用水位资料反演开边界条件(一)[J]. 水动力学研究与进展(A辑), 1999, 14(4B): 92−102.

    Lv Xianqing, Zhang Jie. How to invert open boundary condition from water level data (I)[J]. Chinese Journal of Hydrodynamics, 1999, 14(4B): 92−102.
    [5]
    韩桂军, 何柏荣, 马继瑞, 等. 利用伴随法优化非线性潮汐模型的开边界条件Ⅰ: 伴随方程的建立及“孪生”数值试验[J]. 海洋学报, 2000, 22(6): 27−33.

    Han Guijun, He Bairong, Ma Jirui, et al. Optimizing open boundary conditions of nonlinear tidal model using adjoint method I: The establishment of adjoint model and twin-experiment[J]. Haiyang Xuebao, 2000, 22(6): 27−33.
    [6]
    韩桂军, 方国洪, 马继瑞, 等. 利用伴随法优化非线性潮汐模型的开边界条件Ⅱ: 黄海、东海潮汐资料的同化试验[J]. 海洋学报, 2001, 23(2): 25−31.

    Han Guijun, Fang Guohong, Ma Jirui, et al. Optimizing open boundary conditions of nonlinear tidal model using adjoint method Ⅱ: Assimilation experiment for tide in the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2001, 23(2): 25−31.
    [7]
    吕咸青, 吴自库, 殷忠斌, 等. 渤、黄、东海潮汐开边界的1种反演方法[J]. 青岛海洋大学学报, 2003, 33(2): 165−172.

    Lv Xianqing, Wu Ziku, Yin Zhongbin, et al. Inversion of the tides with the open boundaries of the Bohai, Huanghai and Donghai Seas[J]. Periodical of Ocean University of China, 2003, 33(2): 165−172.
    [8]
    Han Guijun, Li Wei, He Zhongjie, et al. Assimilated tidal results of tide gauge and TOPEX/POSEIDON data over the China seas using a variational adjoint approach with a nonlinear numerical model[J]. Advances in Atmospheric Sciences, 2006, 23(3): 449−460. doi: 10.1007/s00376-006-0449-8
    [9]
    Zhang Jicai, Lu Xianqing. Parameter estimation for a three-dimensional numerical barotropic tidal model with adjoint method[J]. International Journal for Numerical Methods in Fluids, 2008, 57(1): 47−92. doi: 10.1002/fld.1620
    [10]
    Qian Shouguo, Lv Xianqing, Sun Rencheng, et al. The estimation of open boundary conditions in the Bohai Sea with POD 4D VAR data assimilation[C]//Proceedings of 2016 International Conference on Applied Mathematics, Simulation and Modelling. Beijing: Atlantis Press, 2016: 9−11.
    [11]
    Qian Suhui, Wang Daosheng, Zhang Jicai, et al. Adjoint estimation and interpretation of spatially varying bottom friction coefficients of the M2 tide for a tidal model in the Bohai, Yellow and East China Seas with multi-mission satellite observations[J]. Ocean Modelling, 2021, 161: 101783. doi: 10.1016/j.ocemod.2021.101783
    [12]
    Wang Daosheng, Zhang Jicai, Wang Yaping. Estimation of bottom friction coefficient in multi-constituent tidal models using the adjoint method: temporal variations and spatial distributions[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2020JC016949.
    [13]
    Ngodock H E, Souopgui I, Wallcraft A J, et al. On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model[J]. Ocean Modelling, 2016, 97: 16−26. doi: 10.1016/j.ocemod.2015.10.011
    [14]
    Wilson G, Özkan-Haller H T. Ensemble-based data assimilation for estimation of river depths[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1558−1568. doi: 10.1175/JTECH-D-12-00014.1
    [15]
    Wilson G W, Özkan-Haller H T, Holman R A. Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12057. doi: 10.1029/2010JC006286
    [16]
    Wilson G W, Özkan-Haller H T, Holman R A, et al. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1993−2016. doi: 10.1002/2013JC009213
    [17]
    Landon K C, Wilson G W, Özkan-Haller H T, et al. Bathymetry estimation using drifter-based velocity measurements on the Kootenai River, Idaho[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 503−514. doi: 10.1175/JTECH-D-13-00123.1
    [18]
    Moghimi S, Özkan-Haller H T, Wilson G W, et al. Data assimilation for bathymetry estimation at a tidal inlet[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(10): 2145−2163. doi: 10.1175/JTECH-D-14-00188.1
    [19]
    An H S. A numerical experiment of the M2 tide in the Yellow Sea[J]. Journal of the Oceanographical Society of Japan, 1977, 33(2): 103−110. doi: 10.1007/BF02110016
    [20]
    方国洪. 黄海潮能的消耗[J]. 海洋与湖沼, 1979, 10(3): 200−213.

    Fang Guohong. Dissipation of tidal energy in Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1979, 10(3): 200−213.
    [21]
    Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567−581. doi: 10.1023/A:1011157212596
    [22]
    Egbert G D, Bennett A F, Foreman M G G. Topex/Poseidon tides estimated using a global inverse model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24821−24852. doi: 10.1029/94JC01894
    [23]
    李大炜, 李建成, 金涛勇, 等. 利用验潮站资料评估全球海潮模型的精度[J]. 大地测量与地球动力学, 2012, 32(4): 106−110.

    Li Dawei, Li Jiancheng, Jin Taoyong, et al. Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 106−110.
    [24]
    Mellor G L, Häkkinen S M, Ezer T, et al. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids[M]//Pinardi N, Woods J. Ocean Forecasting. Berlin, Heidelberg: Springer, 2002: 55−72.
    [25]
    Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884−2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
    [26]
    Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723−757. doi: 10.1002/qj.49712555417
    [27]
    Aksoy A, Zhang Fuqing, Nielsen-Gammon J W. Ensemble-based simultaneous state and parameter estimation with MM5[J]. Geophysical Research Letters, 2006, 33(12): L12801. doi: 10.1029/2006GL026186
    [28]
    Tong Mingjing, Xue Ming. Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: parameter estimation experiments[J]. Monthly Weather Review, 2008, 136(5): 1649−1668. doi: 10.1175/2007MWR2071.1
    [29]
    Zhang Shaoqing, Liu Zhengyu, Rosati A, et al. A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model[J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64(1): 10963. doi: 10.3402/tellusa.v64i0.10963
    [30]
    Zhang Shaoqing, Anderson J L, Rosati A, et al. Multiple time level adjustment for data assimilation[J]. Tellus A, 2004, 56(1): 2−15. doi: 10.3402/tellusa.v56i1.14390
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (427) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return