Citation: | Wu Haowen,Zhao Yanling,Han Guijun, et al. Bathymetry estimation using ensemble adjustment Kalman filter in the numerical simulation of M2 constituent[J]. Haiyang Xuebao,2022, 44(6):10–21 doi: 10.12284/hyxb2022057 |
[1] |
Das S K, Lardner R W. Variational parameter estimation for a two-dimensional numerical tidal model[J]. International Journal for Numerical Methods in Fluids, 1992, 15(3): 313−327. doi: 10.1002/fld.1650150305
|
[2] |
Lardner R W, Al-Rabeh A H, Gunay N. Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian Gulf[J]. Journal of Geophysical Research: Oceans, 1993, 98(C10): 18229−18242. doi: 10.1029/93JC01411
|
[3] |
朱江, 曾庆存, 郭冬建, 等. 利用伴随算子法从岸边潮位站资料估计近岸模式的开边界条件[J]. 中国科学(D辑: 地球科学), 1998, 41(3): 330−336.
Zhu Jiang, Zeng Qingcun, Guo Dongjian, et al. Estimating open boundary conditions from coastal tidal observations by adjoint approach[J]. Science in China Series D: Earth Sciences, 1998, 41(3): 330−336.
|
[4] |
吕咸青, 张杰. 如何利用水位资料反演开边界条件(一)[J]. 水动力学研究与进展(A辑), 1999, 14(4B): 92−102.
Lv Xianqing, Zhang Jie. How to invert open boundary condition from water level data (I)[J]. Chinese Journal of Hydrodynamics, 1999, 14(4B): 92−102.
|
[5] |
韩桂军, 何柏荣, 马继瑞, 等. 利用伴随法优化非线性潮汐模型的开边界条件Ⅰ: 伴随方程的建立及“孪生”数值试验[J]. 海洋学报, 2000, 22(6): 27−33.
Han Guijun, He Bairong, Ma Jirui, et al. Optimizing open boundary conditions of nonlinear tidal model using adjoint method I: The establishment of adjoint model and twin-experiment[J]. Haiyang Xuebao, 2000, 22(6): 27−33.
|
[6] |
韩桂军, 方国洪, 马继瑞, 等. 利用伴随法优化非线性潮汐模型的开边界条件Ⅱ: 黄海、东海潮汐资料的同化试验[J]. 海洋学报, 2001, 23(2): 25−31.
Han Guijun, Fang Guohong, Ma Jirui, et al. Optimizing open boundary conditions of nonlinear tidal model using adjoint method Ⅱ: Assimilation experiment for tide in the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2001, 23(2): 25−31.
|
[7] |
吕咸青, 吴自库, 殷忠斌, 等. 渤、黄、东海潮汐开边界的1种反演方法[J]. 青岛海洋大学学报, 2003, 33(2): 165−172.
Lv Xianqing, Wu Ziku, Yin Zhongbin, et al. Inversion of the tides with the open boundaries of the Bohai, Huanghai and Donghai Seas[J]. Periodical of Ocean University of China, 2003, 33(2): 165−172.
|
[8] |
Han Guijun, Li Wei, He Zhongjie, et al. Assimilated tidal results of tide gauge and TOPEX/POSEIDON data over the China seas using a variational adjoint approach with a nonlinear numerical model[J]. Advances in Atmospheric Sciences, 2006, 23(3): 449−460. doi: 10.1007/s00376-006-0449-8
|
[9] |
Zhang Jicai, Lu Xianqing. Parameter estimation for a three-dimensional numerical barotropic tidal model with adjoint method[J]. International Journal for Numerical Methods in Fluids, 2008, 57(1): 47−92. doi: 10.1002/fld.1620
|
[10] |
Qian Shouguo, Lv Xianqing, Sun Rencheng, et al. The estimation of open boundary conditions in the Bohai Sea with POD 4D VAR data assimilation[C]//Proceedings of 2016 International Conference on Applied Mathematics, Simulation and Modelling. Beijing: Atlantis Press, 2016: 9−11.
|
[11] |
Qian Suhui, Wang Daosheng, Zhang Jicai, et al. Adjoint estimation and interpretation of spatially varying bottom friction coefficients of the M2 tide for a tidal model in the Bohai, Yellow and East China Seas with multi-mission satellite observations[J]. Ocean Modelling, 2021, 161: 101783. doi: 10.1016/j.ocemod.2021.101783
|
[12] |
Wang Daosheng, Zhang Jicai, Wang Yaping. Estimation of bottom friction coefficient in multi-constituent tidal models using the adjoint method: temporal variations and spatial distributions[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2020JC016949.
|
[13] |
Ngodock H E, Souopgui I, Wallcraft A J, et al. On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model[J]. Ocean Modelling, 2016, 97: 16−26. doi: 10.1016/j.ocemod.2015.10.011
|
[14] |
Wilson G, Özkan-Haller H T. Ensemble-based data assimilation for estimation of river depths[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1558−1568. doi: 10.1175/JTECH-D-12-00014.1
|
[15] |
Wilson G W, Özkan-Haller H T, Holman R A. Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12057. doi: 10.1029/2010JC006286
|
[16] |
Wilson G W, Özkan-Haller H T, Holman R A, et al. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1993−2016. doi: 10.1002/2013JC009213
|
[17] |
Landon K C, Wilson G W, Özkan-Haller H T, et al. Bathymetry estimation using drifter-based velocity measurements on the Kootenai River, Idaho[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 503−514. doi: 10.1175/JTECH-D-13-00123.1
|
[18] |
Moghimi S, Özkan-Haller H T, Wilson G W, et al. Data assimilation for bathymetry estimation at a tidal inlet[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(10): 2145−2163. doi: 10.1175/JTECH-D-14-00188.1
|
[19] |
An H S. A numerical experiment of the M2 tide in the Yellow Sea[J]. Journal of the Oceanographical Society of Japan, 1977, 33(2): 103−110. doi: 10.1007/BF02110016
|
[20] |
方国洪. 黄海潮能的消耗[J]. 海洋与湖沼, 1979, 10(3): 200−213.
Fang Guohong. Dissipation of tidal energy in Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1979, 10(3): 200−213.
|
[21] |
Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567−581. doi: 10.1023/A:1011157212596
|
[22] |
Egbert G D, Bennett A F, Foreman M G G. Topex/Poseidon tides estimated using a global inverse model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24821−24852. doi: 10.1029/94JC01894
|
[23] |
李大炜, 李建成, 金涛勇, 等. 利用验潮站资料评估全球海潮模型的精度[J]. 大地测量与地球动力学, 2012, 32(4): 106−110.
Li Dawei, Li Jiancheng, Jin Taoyong, et al. Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 106−110.
|
[24] |
Mellor G L, Häkkinen S M, Ezer T, et al. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids[M]//Pinardi N, Woods J. Ocean Forecasting. Berlin, Heidelberg: Springer, 2002: 55−72.
|
[25] |
Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884−2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
|
[26] |
Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723−757. doi: 10.1002/qj.49712555417
|
[27] |
Aksoy A, Zhang Fuqing, Nielsen-Gammon J W. Ensemble-based simultaneous state and parameter estimation with MM5[J]. Geophysical Research Letters, 2006, 33(12): L12801. doi: 10.1029/2006GL026186
|
[28] |
Tong Mingjing, Xue Ming. Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: parameter estimation experiments[J]. Monthly Weather Review, 2008, 136(5): 1649−1668. doi: 10.1175/2007MWR2071.1
|
[29] |
Zhang Shaoqing, Liu Zhengyu, Rosati A, et al. A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model[J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64(1): 10963. doi: 10.3402/tellusa.v64i0.10963
|
[30] |
Zhang Shaoqing, Anderson J L, Rosati A, et al. Multiple time level adjustment for data assimilation[J]. Tellus A, 2004, 56(1): 2−15. doi: 10.3402/tellusa.v56i1.14390
|