Citation: | Guo Shaojing,Jing Chunsheng,Zhang Shanwu, et al. Temperature inversion and its decline over the eastern continental slope in the Gulf of Alaska based on seal observation[J]. Haiyang Xuebao,2022, 44(6):48–57 doi: 10.12284/hyxb2022053 |
[1] |
Roden G I. Shallow temperature inversions in the Pacific Ocean[J]. Journal of Geophysical Research: Atmosphere, 1964, 69(14): 2899−2914. doi: 10.1029/JZ069i014p02899
|
[2] |
Ueno H, Yasuda I. Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16885−16897. doi: 10.1029/2000JC900020
|
[3] |
Uda M. Oceanography of the subarctic Pacific Ocean[J]. Journal of the Fisheries Research Board of Canada, 1963, 20(1): 119−179. doi: 10.1139/f63-011
|
[4] |
Roden G I. Oceanic subarctic fronts of the central pacific: structure of and response to atmospheric forcing[J]. Journal of Physical Oceanography, 1977, 7(6): 761−778. doi: 10.1175/1520-0485(1977)007<0761:OSFOTC>2.0.CO;2
|
[5] |
Ueno H, Yasuda I. Temperature inversions in the subarctic North Pacific[J]. Journal of Physical Oceanography, 2005, 35(12): 2444−2456. doi: 10.1175/JPO2829.1
|
[6] |
Chen Xianyao, Qiao Fangli, Ge Renfeng, et al. Development of subsurface warm water in the East China Sea in fall[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S10.
|
[7] |
陈志华, 赵进平. 北冰洋次表层暖水形成机制的研究[J]. 海洋与湖沼, 2010, 41(2): 167−174. doi: 10.11693/hyhz201002002002
Chen Zhihua, Zhao Jinping. The thermodynamics of subsurface warm water in the Arctic Ocean[J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 167−174. doi: 10.11693/hyhz201002002002
|
[8] |
Ueno H, Yasuda I. Warm and saline water transport to the North Pacific subarctic region: world ocean circulation experiment and subarctic gyre experiment data analysis[J]. Journal of Geophysical Research: Oceans, 2001, 106(C10): 22131−22141. doi: 10.1029/2000JC000457
|
[9] |
Ueno H, Oka E, Suga T, et al. Seasonal and interannual variability of temperature inversions in the subarctic North Pacific[J]. Geophysical Research Letters, 2005, 32(20): L20603. doi: 10.1029/2005GL023948
|
[10] |
Goszczko I, Ingvaldsen R B, Onarheim I H. Wind-driven cross-shelf exchange–West Spitsbergen current as a source of heat and salt for the adjacent shelf in Arctic winters[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2668−2696. doi: 10.1002/2017JC013553
|
[11] |
高郭平, 闫敏斐, 徐智昕, 等. 2011年初冬南极普里兹湾冰间湖区上层水体结构演化研究[J]. 极地研究, 2016, 28(2): 219−227.
Gao Guoping, Yan Minfei, Xu Zhixin, et al. The evolution of upper water structure in the Prydz Bay polynya region during Antarctic winter, 2011[J]. Chinese Journal of Polar Research, 2016, 28(2): 219−227.
|
[12] |
Williams G D, Hindell M, Houssais M N, et al. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by elephant seal foraging in the Adélie Depression, East Antarctica[J]. Ocean Science, 2011, 7(2): 185−202. doi: 10.5194/os-7-185-2011
|
[13] |
Keates T R, Kudela R M, Holser R R, et al. Chlorophyll fluorescence as measured in situ by animal-borne instruments in the northeastern Pacific Ocean[J]. Journal of Marine Systems, 2020, 203: 103265. doi: 10.1016/j.jmarsys.2019.103265
|
[14] |
Nakanowatari T, Ohshima K I, Mensah V, et al. Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk[J]. Polar Science, 2017, 13: 56−65. doi: 10.1016/j.polar.2017.06.001
|
[15] |
Boehme L, Lovell P, Biuw M, et al. Technical note: animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection[J]. Ocean Science, 2009, 5(4): 685−695. doi: 10.5194/os-5-685-2009
|
[16] |
Roquet F, Charrassin J B, Marchand S, et al. Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(6): 787−801. doi: 10.1175/2010JTECHO801.1
|
[17] |
Siegelman L, Roquet F, Mensah V, et al. Correction and accuracy of high- and low-resolution CTD data from animal-borne instruments[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(5): 745−760. doi: 10.1175/JTECH-D-18-0170.1
|
[18] |
Slivinski L C, Compo G P, Whitaker J S, et al. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 2876−2908. doi: 10.1002/qj.3598
|
[19] |
Carton J A, Chepurin G A, Chen L G. SODA3: a new ocean climate reanalysis[J]. Journal of Climate, 2018, 31(17): 6967−6983. doi: 10.1175/JCLI-D-18-0149.1
|
[20] |
Feng Ming, Lukas R, Hacker P, et al. Upper-ocean heat and salt balances in the western Equatorial Pacific in response to the intraseasonal oscillation during TOGA COARE[J]. Journal of Climate, 1998, 13(14): 2409−2427.
|
[21] |
张莹, 赵进平. 加拿大海盆冰下表层海水湍扩散系数估计[J]. 中国海洋大学学报, 2007, 37(5): 695−703.
Zhang Ying, Zhao Jinping. The estimation of vertical turbulent diffusivity in the surface layer in the Canada Basin[J]. Periodical of Ocean University of China, 2007, 37(5): 695−703.
|
[22] |
Bryan F. Parameter sensitivity of primitive equation ocean general circulation models[J]. Journal of Physical Oceanography, 1987, 17(7): 970−985. doi: 10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2
|
[23] |
Beamer J P, Hill D F, Arendt A, et al. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed[J]. Water Resources Research, 2016, 52(5): 3888−3909. doi: 10.1002/2015WR018457
|