Citation: | Yu Zhenlong,Xu Dongfeng,Yao Zhixiong, et al. Research on PDO index prediction based on multivariate LSTM neural network model[J]. Haiyang Xuebao,2022, 44(6):58–67 doi: 10.12284/hyxb2022047 |
[1] |
Mantua N J, Hare S R, Zhang Yuan, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
|
[2] |
Mantua N J, Hare S R. The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58(1): 35−44. doi: 10.1023/A:1015820616384
|
[3] |
Liu Dan, Tian Yongjun, Ma Shuyang, et al. Long-term variability of piscivorous fish in China Seas under climate change with implication for fisheries management[J]. Frontiers in Marine Science, 2021, 8: 581952. doi: 10.3389/fmars.2021.581952
|
[4] |
Song Wanjiao, Wang Qiguang. CP El Niño and PDO variability affect summer precipitation over East China[J]. Advances in Meteorology, 2020: 2747194.
|
[5] |
Bi Shuoben, Qu Ying, Bi Shengjie, et al. Multi-scale impacts of the Pacific SST and PDO on the summer precipitation of North-Central China from 1870 to 2002[J]. Theoretical and Applied Climatology, 2018, 132(3): 953−963.
|
[6] |
Zhang Guwei, Zeng Gang, Li Chun, et al. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period[J]. Climate Dynamics, 2020, 54(5): 3003−3020.
|
[7] |
Xue Xu, Chen Wen, Chen Shangfeng, et al. PDO modulation of the ENSO impact on the summer South Asian high[J]. Climate Dynamics, 2018, 50(3/4): 1393−1411.
|
[8] |
Xu Yifei, Li Te, Shen Shuanghe, et al. Effects of cyclic variability in Pacific decadal oscillation on winter wheat production in China[J]. International Journal of Climatology, 2021, 41(4): 2239−2252. doi: 10.1002/joc.6956
|
[9] |
Nan Feng, Yu Fei, Xue Huijie, et al. Freshening of the upper ocean in the South China Sea since the early 1990s[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 118: 20−29. doi: 10.1016/j.dsr.2016.10.010
|
[10] |
Zeng Lili, Wang Dongxiao, Xiu Peng, et al. Decadal variation and trends in subsurface salinity from 1960 to 2012 in the northern South China Sea[J]. Geophysical Research Letters, 2016, 43(23): 12181−12189. doi: 10.1002/2016GL071439
|
[11] |
Li Shujun, Wu Lixin, Yang Yun, et al. The Pacific Decadal Oscillation less predictable under greenhouse warming[J]. Nature Climate Change, 2020, 10(1): 30−34. doi: 10.1038/s41558-019-0663-x
|
[12] |
Yasuda I. The 18.6-year period moon-tidal cycle in Pacific Decadal Oscillation reconstructed from tree-rings in western North America[J]. Geophysical Research Letters, 2009, 36(5): L05605.
|
[13] |
MacDonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the past millennium[J]. Geophysical Research Letters, 2005, 32(8): L08703.
|
[14] |
赵传湖, 弓泓, 李猛. 近400年来北太平洋年代际振荡变化[J]. 中国科技论文, 2015, 10(21): 2528−2533. doi: 10.3969/j.issn.2095-2783.2015.21.013
Zhao Chuanhu, Gong Hong, Li Meng. Variations of Pacific decadal oscillation over the past 400 years[J]. China Sciencepaper, 2015, 10(21): 2528−2533. doi: 10.3969/j.issn.2095-2783.2015.21.013
|
[15] |
Chen Chunzhu, Zhao Wenwei, Zhang Xiaojian. Pacific Decadal Oscillation-like variability at a millennial timescale during the Holocene[J]. Global and Planetary Change, 2021, 199: 103448. doi: 10.1016/j.gloplacha.2021.103448
|
[16] |
Schneider N, Cornuelle B D. The forcing of the Pacific decadal oscillation[J]. Journal of Climate, 2005, 18(21): 4355−4373. doi: 10.1175/JCLI3527.1
|
[17] |
Newman M, Alexander M A, Ault T R, et al. The Pacific decadal oscillation, revisited[J]. Journal of Climate, 2016, 29(12): 4399−4427. doi: 10.1175/JCLI-D-15-0508.1
|
[18] |
Newman M. Interannual to decadal predictability of tropical and North Pacific sea surface temperatures[J]. Journal of Climate, 2007, 20(11): 2333−2356. doi: 10.1175/JCLI4165.1
|
[19] |
Huang Yanyan, Wang Huijun. A possible approach for decadal prediction of the PDO[J]. Journal of Meteorological Research, 2020, 34(1): 63−72. doi: 10.1007/s13351-020-9144-4
|
[20] |
Lu Zhenghui, Yuan Naiming, Yang Qing, et al. Early warning of the Pacific Decadal Oscillation phase transition using complex network analysis[J]. Geophysical Research Letters, 2021, 48(7): e2020GL091674.
|
[21] |
Xiong Yating, Chen Qiuyu, Ren Xuejuan. Influence of boreal winter intraseasonal variation of Aleutian Low on water vapor transport and Atmospheric rivers[J]. Atmosphere, 2019, 10(2): 49. doi: 10.3390/atmos10020049
|
[22] |
Zeng Zhenzhong, Ziegler A D, Searchinger T, et al. A reversal in global terrestrial stilling and its implications for wind energy production[J]. Nature Climate Change, 2019, 9(12): 979−985. doi: 10.1038/s41558-019-0622-6
|
[23] |
Casey K S, Adamec D. Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999[J]. Journal of Geophysical Research, 2002, 107(C8): 3099. doi: 10.1029/2001JC001060
|
[24] |
杜金博, 李春, 刘征宇. 基于热含量探究PDO的三维结构及信号传播特征[J]. 海洋气象学报, 2020, 40(1): 1−11.
Du Jinbo, Li Chun, Liu Zhengyu. Study on three-dimensional structure and signal propagation features of PDO based on heat content[J]. Journal of Marine Meteorology, 2020, 40(1): 1−11.
|
[25] |
Cheng Lijing, Trenberth K E, Fasullo J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3(3): e1601545. doi: 10.1126/sciadv.1601545
|
[26] |
Cheng Lijing, Trenberth K E, Palmer M D, et al. Observed and simulated full-depth ocean heat-content changes for 1970–2005[J]. Ocean Science, 2016, 12(4): 925−935. doi: 10.5194/os-12-925-2016
|
[27] |
Sun Cheng, Kucharski F, Li Jianping, et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation[J]. Nature Communications, 2017, 8(1): 15998. doi: 10.1038/ncomms15998
|
[28] |
Gong Zhanqiu, Sun Cheng, Li Jianping, et al. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales[J]. Climate Dynamics, 2020, 54(1): 807−822.
|
[29] |
Sun Jianqi, Wang Huijun. Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale[J]. Chinese Science Bulletin, 2006, 51(1): 75−79.
|
[30] |
Lindsay R W, Zhang J. The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point?[J]. Journal of Climate, 2005, 18(22): 4879−4894. doi: 10.1175/JCLI3587.1
|
[31] |
Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
|
[32] |
Nieves V, Radin C, Camps-Valls G. Predicting regional coastal sea level changes with machine learning[J]. Scientific Reports, 2021, 11(1): 7650. doi: 10.1038/s41598-021-87460-z
|
[33] |
Haq D Z, Novitasari D C R, Hamid A, et al. Long short-term memory algorithm for rainfall prediction based on El-Niño and IOD data[J]. Procedia Computer Science, 2021, 179: 829−837. doi: 10.1016/j.procs.2021.01.071
|
[34] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
[35] |
Guo Yanan, Cao Xiaoqun, Liu Bainian, et al. El Niño index prediction using deep learning with ensemble empirical mode decomposition[J]. Symmetry, 2020, 12(6): 893. doi: 10.3390/sym12060893
|
[36] |
Broni-Bedaiko C, Katsriku F A, Unemi T, et al. El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM neural networks[J]. Artificial Life and Robotics, 2019, 24(4): 445−451. doi: 10.1007/s10015-019-00540-2
|
[37] |
Cao Xiaoqun, Guo Yanan, Liu Bainian, et al. ENSO prediction based on Long Short-Term Memory (LSTM)[J]. IOP Conference Series: Materials Science and Engineering, 2020, 799(1): 012035. doi: 10.1088/1757-899X/799/1/012035
|
[38] |
Chikamoto Y, Kimoto M, Ishii M, et al. An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC[J]. Climate Dynamics, 2013, 40(5/6): 1201−1222.
|
[39] |
Volodin E, Gritsun A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5[J]. Earth System Dynamics, 2018, 9(4): 1235−1242. doi: 10.5194/esd-9-1235-2018
|