Citation: | Lin Jinbo,Mao Hongfei,Tian Zhenglin, et al. Study on the interaction between solitary waves and the non-submerged marine structures based on the SPH model[J]. Haiyang Xuebao,2022, 44(6):116–127 doi: 10.12284/hyxb2022045 |
[1] |
Liu Xin, Xu Haihua, Shao Songdong, et al. An improved incompressible SPH model for simulation of wave-structure interaction[J]. Computers & Fluids, 2013, 71: 113−123.
|
[2] |
毛鸿飞, 李芳成, 吴光林, 等. 基于黏性流理论对平板受波浪冲击的两相流数值研究[J]. 广东海洋大学学报, 2019, 39(4): 73−80. doi: 10.3969/j.issn.1673-9159.2019.04.011
Mao Hongfei, Li Fangcheng, Wu Guanglin, et al. Two-phase numerical examination of wave impact on a horizontal deck based on the viscous fluid theory[J]. Journal of Guangdong Ocean University, 2019, 39(4): 73−80. doi: 10.3969/j.issn.1673-9159.2019.04.011
|
[3] |
毛鸿飞, 赫岩莉, 袁剑平, 等. 近水面水平圆柱在波浪作用下的水动力系数[J]. 广东海洋大学学报, 2020, 40(4): 109−115. doi: 10.3969/j.issn.1673-9159.2020.04.015
Mao Hongfei, He Yanli, Yuan Jianping, et al. Hydrodynamic coefficients of a horizontal circular cylinder near free surface under wave action[J]. Journal of Guangdong Ocean University, 2020, 40(4): 109−115. doi: 10.3969/j.issn.1673-9159.2020.04.015
|
[4] |
王佳东. 孤立波与板式结构物相互作用的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Wang Jiadong. Numerical simulation of interaction between a solitary wave and the plate structure[D]. Harbin: Harbin Institute of Technology, 2017.
|
[5] |
Tripepi G, Aristodemo F, Meringolo D D, et al. Hydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: Physical tests and δ-LES-SPH simulations[J]. Coastal Engineering, 2020, 158: 103690. doi: 10.1016/j.coastaleng.2020.103690
|
[6] |
沈忠辉, 魏凯, 杨绍林. 孤立波作用下不同长宽比圆端形桥墩受力数值分析[J]. 防灾减灾工程学报, 2020, 40(6): 945−951.
Shen Zhonghui, Wei Kai, Yang Shaolin. Numerical analysis of solitary wave loading on round-ended piers with different length-width ratios[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6): 945−951.
|
[7] |
刚傲, 马玉祥, 牛旭阳, 等. 孤立波与水平板相互作用过程涡演化的研究[G]//第三十届全国水动力学研讨会论文集. 合肥: 中国力学学会, 中国造船工程学会, 2019: 212-219.
Gang Ao, Ma Yuxiang, Niu Xuyang, et al. Study on the vortex evolution in the interaction between solitary waves and submerged plates[G]//Proceedings of the 30th National Conference on Hydrodynamics. Hefei: Chinese Society of Theoretical and Applied Mechanics, the Chinese Society of Naval Architects and Marine Engineers, 2019: 212−219.
|
[8] |
Arabi M G, Sogut D V, Khosronejad A, et al. A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure[J]. Coastal Engineering, 2019, 147: 43−62. doi: 10.1016/j.coastaleng.2019.02.004
|
[9] |
王千, 刘桦, 房詠柳, 等. 孤立波与淹没平板相互作用的三维波面和水动力实验研究[J]. 力学学报, 2019, 51(6): 1605−1613. doi: 10.6052/0459-1879-19-244
Wang Qian, Liu Hua, Fang Yongliu, et al. An experimental study of 3-D wave surface and hydrodynamic loads for interaction between solitary wave and submerged horizontal plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1605−1613. doi: 10.6052/0459-1879-19-244
|
[10] |
邵奇, 王千, 房詠柳, 等. 孤立波中淹没圆盘的波浪力实验研究[J]. 水动力学研究与进展, 2020, 35A(6): 681−687.
Shao Qi, Wang Qian, Fang Yongliu, et al. Experimental study of wave loads on submerged disk in solitary wave[J]. Chinese Journal of Hydrodynamics, 2020, 35A(6): 681−687.
|
[11] |
宋帅. 孤立波与浮式结构物相互作用的粘性流数值模拟研究[D]. 上海: 上海交通大学, 2008.
Song Shuai. The numerical simulation of interaction of solitary waves with floating structures in a viscous fluid[D]. Shanghai: Shanghai Jiao Tong University, 2008.
|
[12] |
Mo W H, Liu P L F. Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders[J]. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(1): 20−28. doi: 10.2478/IJNAOE-2013-003
|
[13] |
Aghili M, Ghadimi P, Maghrebi Y F, et al. Simulating the interaction of solitary wave and submerged horizontal plate using SPH method[J]. International Journal of Physical Research, 2014, 2(2): 16−26.
|
[14] |
高俊亮. 孤立波或波群诱发的港湾振荡研究[D]. 大连: 大连理工大学, 2015.
Gao Junliang. Study on harbor resonance induced by solitary waves or wave groups[D]. Dalian: Dalian University of Technology, 2015.
|
[15] |
Hu Zhengzheng, Greaves D, Raby A. Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam[J]. Ocean Engineering, 2016, 126: 329−342. doi: 10.1016/j.oceaneng.2016.09.017
|
[16] |
Xu Guoji, Chen Qin, Chen Jianhua. Prediction of solitary wave forces on coastal bridge decks using artificial neural networks[J]. Journal of Bridge Engineering, 2018, 23(5): 04018023. doi: 10.1061/(ASCE)BE.1943-5592.0001215
|
[17] |
耿添, 刘桦. 孤立波对浸没平板作用的二维边界元数值分析[J]. 水动力学研究与进展, 2019, 34A(3): 275−282.
Geng Tian, Liu Hua. Numerical analysis of hydrodynamic loads on submerged plate in solitary wave with 2-D boundary integral element method[J]. Chinese Journal of Hydrodynamics, 2019, 34A(3): 275−282.
|
[18] |
邹丽, 李永刚, 胡英杰, 等. 孤立波直墙反射的数值模拟[C]//第三十一届全国水动力学研讨会论文集. 厦门: 上海《水动力学研究与进展》杂志社, 2020: 2045-2051.
Zou Li, Li Yonggang, Hu Yingjie, et al. Numerical simulation of solitary wave reflection at a vertical wall[C]//Proceedings of the 31th National Conference on Hydrodynamics. Xiamen: Chinese Journal of Hydrodynamics, 2020: 2045−2051.
|
[19] |
殷铭简, 赵西增, 王红伟. 孤立波与密排桩防波堤相互作用的数值模拟研究[C]//第三十一届全国水动力学研讨会论文集. 厦门: 上海《水动力学研究与进展》杂志社, 2020: 763-768.
Yin Mingjian, Zhao Xizeng, Wang Hongwei. Numerical study on interactions between solitary wave and pile breakwater[C]//Proceedings of the 31th National Conference on Hydrodynamics. Xiamen: Chinese Journal of Hydrodynamics, 2020: 763−768.
|
[20] |
许彦章, 万德成. 基于MPS-FEM方法数值模拟孤立波与垂直板的相互作用[J]. 水动力学研究与进展, 2020, 35A(3): 346−355.
Xu Yanzhang, Wan Decheng. Application of MPS-FEM method to numerical simulate the interaction between solitary wave and a vertical plate[J]. Chinese Journal of Hydrodynamics, 2020, 35A(3): 346−355.
|
[21] |
Pan K, IJzermans R H A, Jones B D, et al. Application of the SPH method to solitary wave impact on an offshore platform[J]. Computational Particle Mechanics, 2016, 3(2): 155−166. doi: 10.1007/s40571-015-0069-0
|
[22] |
温鸿杰, 张向, 任冰, 等. 随机波在珊瑚礁地形上传播的SPH模拟[J]. 水动力学研究与进展, 2018, 33A(6): 32−39.
Wen Hongjie, Zhang Xiang, Ren Bing, et al. Numerical simulation of random wave transformation over fringing reef using SPH method[J]. Chinese Journal of Hydrodynamics, 2018, 33A(6): 32−39.
|
[23] |
He Ming, Gao Xifeng, Xu Wanhai. Numerical simulation of wave-current interaction using the SPH method[J]. Journal of Hydrodynamics, 2018, 30(3): 535−538. doi: 10.1007/s42241-018-0042-5
|
[24] |
贺铭, 徐万海, 高喜峰, 等. 基于楔体入水的孤立波制造理论及其SPH验证[C]//第十九届中国海洋(岸)工程学术讨论会论文集. 北京: 海洋出版社, 2019: 142-149.
He Ming, Xu Wanhai, Gao Xifeng, et al. Solitary wave manufacturing theory based on wedge entering water and its SPH verification[C]//Proceedings of the 19th China Offshore Engineering Symposium. Beijing: China Ocean Press, 2019: 142−149.
|
[25] |
Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method[J]. Coastal Engineering, 2006, 53(2/3): 141−147.
|
[26] |
Cunningham L S, Rogers B D, Pringgana G. Tsunami wave and structure interaction: an investigation with smoothed-particle hydrodynamics[J]. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 2014, 167(3): 126−138. doi: 10.1680/eacm.13.00028
|
[27] |
Crespo A J C, Domínguez J M, Rogers B D, et al. DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, 187: 204−216. doi: 10.1016/j.cpc.2014.10.004
|
[28] |
Altomare C, Crespo A J C, Rogers B D, et al. Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics[J]. Computers & Structures, 2014, 130: 34−45.
|
[29] |
Saghatchi R, Ghazanfarian J, Gorji-Bandpy M. Numerical simulation of water-entry and sedimentation of an elliptic cylinder using smoothed-particle hydrodynamics method[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(3): 031801. doi: 10.1115/1.4026844
|
[30] |
陈正云, 朱仁庆, 祁江涛. 基于SPH法的二维液体大幅晃荡数值模拟[J]. 船海工程, 2008, 37(2): 44−47. doi: 10.3963/j.issn.1671-7953.2008.02.013
Chen Zhengyun, Zhu Renqing, Qi Jiangtao. Numerical simulation of sloshing in two dimensional liquid tank based on SPH method[J]. Ship & Ocean Engineering, 2008, 37(2): 44−47. doi: 10.3963/j.issn.1671-7953.2008.02.013
|
[31] |
Nguyen C T, Nguyen C T, Bui H H, et al. A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation[J]. Landslides, 2017, 14(1): 69−81. doi: 10.1007/s10346-016-0681-y
|
[32] |
Canelas R B, Domínguez J M, Crespo A J C, et al. A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics[J]. International Journal for Numerical Methods in Fluids, 2015, 78(9): 581−593. doi: 10.1002/fld.4031
|
[33] |
Barreiro A, Crespo A J C, Dominguez J M, et al. Quasi-static mooring solver implemented in SPH[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 381−396. doi: 10.1007/s40722-016-0061-7
|
[34] |
Domínguez J M, Altomare C, Gonzalez-Cao J, et al. Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model[J]. Coastal Engineering Journal, 2019, 61(1): 15−40. doi: 10.1080/21664250.2018.1560682
|
[35] |
Katell G, Eric B. Accuracy of solitary wave generation by a piston wave maker[J]. Journal of Hydraulic Research, 2002, 40(3): 321−331. doi: 10.1080/00221680209499946
|
[36] |
Crespo A J C, Gómez-Gesteira M, Dalrymple R A. Boundary conditions generated by dynamic particles in SPH methods[J]. Computers, Materials & Continua, 2007, 5(3): 173−184.
|
[37] |
Omidvar P, Stansby P K, Rogers B D. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass[J]. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686−705. doi: 10.1002/fld.2528
|
[38] |
Ma Yuxiang, Yuan Changfu, Ai Congfang, et al. Comparison between a non-hydrostatic model and OpenFOAM for 2D wave-structure interactions[J]. Ocean Engineering, 2019, 183: 419−425. doi: 10.1016/j.oceaneng.2019.05.002
|