Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Lu Ya’nan,Zhang Rui,Zhang Hu, et al. Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques[J]. Haiyang Xuebao,2022, 44(2):1–10 doi: 10.12284/hyxb2022040
Citation: Lu Ya’nan,Zhang Rui,Zhang Hu, et al. Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques[J]. Haiyang Xuebao,2022, 44(2):1–10 doi: 10.12284/hyxb2022040

Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques

doi: 10.12284/hyxb2022040
  • Received Date: 2021-07-14
  • Rev Recd Date: 2021-10-24
  • Publish Date: 2022-02-28
  • In this study, we used stable isotope technology to analyze different species (fish, crustaceans, cephalopods, benthos, etc.) collected in spring, summer and autumn in the coastal waters of Jiangsu Province. We used SIBER model to calculate the trophic niche of consumers, and calculated the quantitative indicators of six metrics in different seasons. The results showed that there were no significant differences in δ13C and nitrogen δ15N values among three seasons (p>0.05). In spring, the δ13C values ranged from −24.47‰ to −14.50‰, the δ15N values ranged from 6.86‰ to (14.98±0.49)‰, and the trophic level ranged from 1.52 to 4.28±0.17. In summer, the δ13C values ranged from −19.86‰ to −14.44‰, the δ15N values ranged from 5.79‰ to (12.54±3.50)‰, and the trophic level ranged from 1.25 to 3.52. In autumn, the δ13C values ranged from (−22.17±4.90)‰ to (−14.21±0.36)‰, the δ15N values ranged from 6.30‰ to (14.60±0.51)‰, and the trophic level ranged from 1.34 to 4.15±0.14. The structure of food web was stable in each season, and the trophic niche of some species overlaps in different degrees. In addition, the food sources are more extensive, and the trophic level and community diversity are higher in spring, the food sources of consumers are more abundant, but the degree of trophic niche differentiation is lower in summer, while in autumn, the structure of food web is relatively simple, but the distribution of trophic niche is wider.
  • loading
  • [1]
    Hairston N G, Smith F E, Slobodkin L B. Community structure, population control, and competition[J]. The American Naturalist, 1960, 94(879): 421−425. doi: 10.1086/282146
    [2]
    Duffy J E, Cardinale B J, France K E, et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity[J]. Ecology Letters, 2007, 10(6): 522−538. doi: 10.1111/j.1461-0248.2007.01037.x
    [3]
    Thompson R M, Brose U, Dunne J A, et al. Food webs: reconciling the structure and function of biodiversity[J]. Trends in Ecology & Evolution, 2012, 27(12): 689−697.
    [4]
    Christianen M J A, Middelburg J J, Holthuijsen S J, et al. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale[J]. Ecology, 2017, 98(6): 1498−1512. doi: 10.1002/ecy.1837
    [5]
    Yen J D L, Cabral R B, Cantor M, et al. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures[J]. Journal of Animal Ecology, 2016, 85(2): 537−547. doi: 10.1111/1365-2656.12484
    [6]
    Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 18: 293−320. doi: 10.1146/annurev.es.18.110187.001453
    [7]
    Burdon F J, Mcintosh A R, Harding J S. Mechanisms of trophic niche compression: evidence from landscape disturbance[J]. Journal of Animal Ecology, 2020, 89(3): 730−744. doi: 10.1111/1365-2656.13142
    [8]
    Dauby P. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica[J]. Continental Shelf Research, 1989, 9(2): 181−195. doi: 10.1016/0278-4343(89)90091-5
    [9]
    Newsome S D, del Rio C M, Bearhop S, et al. A niche for isotopic ecology[J]. Frontiers in Ecology and the Environment, 2007, 5(8): 429−436. doi: 10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2
    [10]
    Flaherty E A, Ben-David M. Overlap and partitioning of the ecological and isotopic niches[J]. Oikos, 2010, 119(9): 1409−1416. doi: 10.1111/j.1600-0706.2010.18259.x
    [11]
    Layman C A, Arrington D A, Montaña C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure[J]. Ecology, 2007, 88(1): 42−48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
    [12]
    Layman C A, Quattrochi J P, Peyer C M, et al. Niche width collapse in a resilient top predator following ecosystem fragmentation[J]. Ecology Letters, 2007, 10(10): 937−944. doi: 10.1111/j.1461-0248.2007.01087.x
    [13]
    Layman C A, Araujo M S, Boucek R, et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools[J]. Biological Reviews, 2012, 87(3): 545−562. doi: 10.1111/j.1469-185X.2011.00208.x
    [14]
    李云凯, 张瑞, 张硕, 等. 基于碳氮同位素技术研究重金属在春季江苏近海食物网中的累积[J]. 应用生态学报, 2019, 30(7): 2415−2425.

    Li Yunkai, Zhang Rui, Zhang Shuo, et al. Assessment of heavy metal bioaccumulation in food web of the coastal waters of Jiangsu Province, China, based on stable isotope values (δ13C and δ15N)[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2415−2425.
    [15]
    刘海林, 仲霞铭, 汤建华, 等. 江苏近海鱼类群落组成和多样性的季节变化[J]. 海洋渔业, 2017, 39(1): 9−20. doi: 10.3969/j.issn.1004-2490.2017.01.002

    Liu Hailin, Zhong Xiaming, Tang Jianhua, et al. Seasonal changes of fish community composition and diversity in the offshore waters of Jiangsu[J]. Marine Fisheries, 2017, 39(1): 9−20. doi: 10.3969/j.issn.1004-2490.2017.01.002
    [16]
    许星鸿, 姚海洋, 孟霄, 等. 连云港附近海域海水、表层沉积物和水产品的重金属污染及生态风险评价[J]. 海洋湖沼通报, 2019(5): 110−116.

    Xu Xinghong, Yao Haiyang, Meng Xiao, et al. Evaluation on heavy metals pollution and potential ecological risk in seawater, surface sediment and marine organisms in lianyungang sea areas[J]. Transactions of Oceanology and Limnology, 2019(5): 110−116.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 12763.6−2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2008.
    [18]
    Ricca M A, Miles A K, Anthony R G, et al. Effect of lipid extraction on analyses of stable carbon and stable nitrogen isotopes in coastal organisms of the Aleutian archipelago[J]. Canadian Journal of Zoology, 2007, 85(1): 40−48. doi: 10.1139/z06-187
    [19]
    蔡德陵, 李红燕, 唐启升, 等. 黄东海生态系统食物网连续营养谱的建立: 来自碳氮稳定同位素方法的结果[J]. 中国科学 C辑:生命科学, 2005, 48(6): 531−539. doi: 10.1360/04yc0136

    Cai Deling, Li Hongyan, Tang Qisheng, et al. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem: Insight from carbon and nitrogen stable isotopes[J]. Science in China Series C: Life Sciences, 2005, 48(6): 531−539. doi: 10.1360/04yc0136
    [20]
    谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292−2298.

    Xie Bin, Li Yunkai, Zhang Hu, et al. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2292−2298.
    [21]
    Post D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703−718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [22]
    Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities: SIBER-stable isotope bayesian ellipses in R[J]. Journal of Animal Ecology, 2011, 80(3): 595−602. doi: 10.1111/j.1365-2656.2011.01806.x
    [23]
    De Smet B, Fournier J, De Troch M, et al. Integrating ecosystem engineering and food web ecology: testing the effect of biogenic reefs on the food web of a soft-bottom intertidal area[J]. PLoS One, 2015, 10(10): e0140857. doi: 10.1371/journal.pone.0140857
    [24]
    高世科, 孙文, 张硕. 基于稳定同位素方法的吕泗渔场近岸海域主要生物潜在碳源及营养级分析[J]. 海洋学报, 2021, 43(6): 71−80.

    Gao Shike, Sun Wen, Zhang Shuo. The potential carbon source and trophic level analysis of main organisms in coastal water of Lüsi fishing ground, based on carbon and nitrogen stable isotope analysis[J]. Haiyang Xuebao, 2021, 43(6): 71−80.
    [25]
    Matthews B, Mazumder A. A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization[J]. Oecologia, 2004, 140(2): 361−371. doi: 10.1007/s00442-004-1579-2
    [26]
    刘春云, 姜少玉, 宋博, 等. 烟台养马岛潮间带大型底栖动物食物网结构特征[J]. 海洋与湖沼, 2020, 51(3): 467−476.

    Liu Chunyun, Jiang Shaoyu, Song Bo, et al. Food web structure of macrobenthos in the intertidal zone of Yangma Island, Yantai, China[J]. Oceanologia et Limnologia Sinica, 2020, 51(3): 467−476.
    [27]
    徐兆礼, 陈佳杰. 小黄鱼洄游路线分析[J]. 中国水产科学, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014

    Xu Zhaoli, Chen Jiajie. Analysis on migratory routine of Larimichthy polyactis[J]. Journal of Fishery Sciences of China, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014
    [28]
    仲霞铭, 张虎, 汤建华, 等. 江苏近岸海域小黄鱼时空分布特征[J]. 水产学报, 2011, 35(2): 238−246.

    Zhong Xiaming, Zhang Hu, Tang Jianhua, et al. Temporal and spatial distribution of Larimichthys polyactis Bleeker resources in offshore areas of Jiangsu Province[J]. Journal of Fisheries of China, 2011, 35(2): 238−246.
    [29]
    Madurell T, Fanelli E, Cartes J E. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean)[J]. Journal of Marine Systems, 2008, 71(3/4): 336−345.
    [30]
    Power M, Power G, Caron F, et al. Growth and dietary niche in Salvelinus Alpinus and Salvelinus Fontinalis as revealed by stable isotope analysis[J]. Environmental Biology of Fishes, 2002, 64(1/3): 75−85.
    [31]
    Wilson R M, Chanton J, Lewis G, et al. Isotopic variation (δ15N, δ13C, and δ34S) with body size in post-larval estuarine consumers[J]. Estuarine, Coastal and Shelf Science, 2009, 83(3): 307−312. doi: 10.1016/j.ecss.2009.04.006
    [32]
    Rothhaupt K O, Hanselmann A J, Yohannes E. Niche differentiation between sympatric alien aquatic crustaceans: An isotopic evidence[J]. Basic and Applied Ecology, 2014, 15(5): 453−463. doi: 10.1016/j.baae.2014.07.002
    [33]
    Cornelissen I J M, Vijverberg J, Van Den Beld A M, et al. Heterogeneity in food-web interactions of fish in the Mwanza Gulf, Lake Victoria: a quantitative stable isotope study[J]. Hydrobiologia, 2018, 805(1): 113−130. doi: 10.1007/s10750-017-3297-x
    [34]
    纪炜炜, 姜亚洲, 阮雯, 等. 基于稳定同位素方法分析东海中北部及黄海南部春季主要鱼类的食性特征[J]. 海洋渔业, 2013, 35(4): 415−422. doi: 10.3969/j.issn.1004-2490.2013.04.006

    Ji Weiwei, Jiang Yazhou, Ruan Wen, et al. Stable isotope analysis on the feeding character of representative fishes during spring in central and northern East China Sea and south Yellow Sea[J]. Marine Fisheries, 2013, 35(4): 415−422. doi: 10.3969/j.issn.1004-2490.2013.04.006
    [35]
    徐军, 张敏, 谢平. 氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 2010, 22(1): 8−20. doi: 10.18307/2010.0102

    Xu Jun, Zhang Min, Xie Ping. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling[J]. Journal of Lake Sciences, 2010, 22(1): 8−20. doi: 10.18307/2010.0102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (339) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return