Citation: | Yang Xiao,Zhang Yongchui,Xia Changshui, et al. Spatiotemporal variations of mesoscale eddies in the Japan Sea[J]. Haiyang Xuebao,2022, 44(6):22–36 doi: 10.12284/hyxb2022035 |
[1] |
Robinson A R. Eddies in Marine Science[M]. New York: Springer-Verlag, 1983: 609.
|
[2] |
李立. 南海中尺度海洋现象研究概述[J]. 台湾海峡, 2002, 21(2): 265−274.
Li Li. A review on mesoscale oceanographical phenomena in the South China Sea[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(2): 265−274.
|
[3] |
Wang Huizan, Liu Ding, Zhang Weimin, et al. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1711−1728. doi: 10.1007/s00343-019-9149-y
|
[4] |
Holland W R. The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model[J]. Journal of Physical Oceanography, 1978, 8(3): 363−392. doi: 10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2
|
[5] |
McWilliams J C, Flierl G R. On the evolution of isolated, nonlinear vortices[J]. Journal of Physical Oceanography, 1979, 9(6): 1155−1182. doi: 10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2
|
[6] |
Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
|
[7] |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
|
[8] |
Gruber N, Lachkar Z, Frenzel H, et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems[J]. Nature Geoscience, 2011, 4(11): 787−792. doi: 10.1038/ngeo1273
|
[9] |
Liu Yu, Dong Changming, Guan Yuping, et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 68: 54−67. doi: 10.1016/j.dsr.2012.06.001
|
[10] |
Petersen M R, Williams S J, Maltrud M E, et al. A three-dimensional eddy census of a high-resolution global ocean simulation[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1759−1774. doi: 10.1002/jgrc.20155
|
[11] |
Dong Changming, McWilliams J C, Liu Yu, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5(1): 3294. doi: 10.1038/ncomms4294
|
[12] |
Sun Wenjin, Dong Changming, Wang Ruyun, et al. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1476−1496. doi: 10.1002/2016JC012226
|
[13] |
Sun Wenjin, Dong Changming, Tan Wei, et al. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the north Pacific based on remote sensing data[J]. Remote Sensing, 2019, 11(2): 208. doi: 10.3390/rs11020208
|
[14] |
Lguensat R, Sun Miao, Fablet R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]//Proceedings of the IGARSS 2018·2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 1764−1767.
|
[15] |
Xu Guangjun, Cheng Cheng, Yang Wenxian, et al. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 2019, 11(11): 1349. doi: 10.3390/rs11111349
|
[16] |
Duo Zijun, Wang Wenke, Wang Huizan. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote Sensing, 2019, 11(16): 1921. doi: 10.3390/rs11161921
|
[17] |
Santana O J, Hernández-Sosa D, Martz J, et al. Neural network training for the detection and classification of oceanic mesoscale eddies[J]. Remote Sensing, 2020, 12(16): 2625. doi: 10.3390/rs12162625
|
[18] |
Yang Xiao, Xu Guangjun, Liu Yu, et al. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the Bay of Bengal[J]. Remote Sensing, 2020, 12(21): 3485. doi: 10.3390/rs12213485
|
[19] |
Park K A, Park J E, Choi B J, et al. An oceanic current map of the east sea for science textbooks based on scientific knowledge acquired from oceanic measurements[J]. The Sea: Journal of the Korean Society of Oceanography, 2013, 18(4): 234−265.
|
[20] |
Ichiye T, Takano K. Mesoscale eddies in the Sea of Japan[J]. La Mer, 1988, 26: 69−76.
|
[21] |
Tanioka K. On the east Korean Warm Current (Tosen Warm Current)[J]. Oceanographical Magazine, 1968, 20: 31−38.
|
[22] |
Kim K, Legeckis R. Branching of the Tsushima current in 1981–83[J]. Progress in Oceanography, 1986, 17(3/4): 265−276.
|
[23] |
Isoda Y, Saitoh S I. The northward intruding eddy along the east coast of Korea[J]. Journal of Oceanography, 1993, 49(4): 443−458. doi: 10.1007/BF02234959
|
[24] |
Isoda Y. Warm eddy movements in the eastern Japan Sea[J]. Journal of Oceanography, 1994, 50(1): 1−15. doi: 10.1007/BF02233852
|
[25] |
Lie H J, Byun S K, Bang I, et al. Physical structure of eddies in the southwestern East Sea[J]. Journal of the Korean Society Oceanography, 1995, 30(3): 170−183.
|
[26] |
Jacobs G A, Hogan P J, Whitmer K R. Effects of eddy variability on the circulation of the Japan/East Sea[J]. Journal of Oceanography, 1999, 55(2): 247−256. doi: 10.1023/A:1007898131004
|
[27] |
Morimoto A, Yanagi T, Kaneko A. Eddy field in the Japan Sea derived from satellite altimetric data[J]. Journal of Oceanography, 2000, 56(4): 449−462. doi: 10.1023/A:1011184523983
|
[28] |
Ebuchi N, Hanawa K. Influence of mesoscale eddies on variations of the Kuroshio path south of Japan[J]. Journal of Oceanography, 2003, 59(1): 25−36. doi: 10.1023/A:1022856122033
|
[29] |
Mitchell D A, Teague W J, Wimbush M, et al. The Dok cold eddy[J]. Journal of Physical Oceanography, 2005, 35(3): 273−288. doi: 10.1175/JPO-2684.1
|
[30] |
Lee D K, Niiler P P. The energetic surface circulation patterns of the Japan/East Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(11/13): 1547−1563.
|
[31] |
Lee D K, Niiler P. Eddies in the southwestern East/Japan Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(10): 1233−1242. doi: 10.1016/j.dsr.2010.06.002
|
[32] |
Shin H R, Kim I, Kim D, et al. Physical characteristics and classification of the Ulleung warm eddy in the East Sea (Japan Sea)[J]. The Sea: Journal of the Korean Society of Oceanography, 2019, 24(2): 298−317.
|
[33] |
Hogan P J, Hurlburt H E. Why do intrathermocline eddies form in the Japan/East Sea? A modeling perspective[J]. Oceanography, 2006, 19(3): 134−143. doi: 10.5670/oceanog.2006.50
|
[34] |
Gordon A L, Giulivi C F, Lee C M, et al. Japan/East Sea intrathermocline eddies[J]. Journal of Physical Oceanography, 2002, 32(6): 1960−1974. doi: 10.1175/1520-0485(2002)032<1960:JESIE>2.0.CO;2
|
[35] |
Yong H J, Jang G C, Jinku P. Physical boundaries of intrathermocline Ulleung eddies in the East/Japan Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 143: 15−23. doi: 10.1016/j.dsr2.2016.09.004
|
[36] |
Gaube P, McGillicuddy Jr D J, Chelton D B, et al. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8195−8220. doi: 10.1002/2014JC010111
|
[37] |
Dufois F, Hardman-Mountford N J, Greenwood J, et al. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing[J]. Science Advances, 2016, 2(5): e1600282. doi: 10.1126/sciadv.1600282
|
[38] |
Maúre E R, Ishizaka J, Sukigara C, et al. Mesoscale eddies control the timing of spring phytoplankton blooms: a case study in the Japan Sea[J]. Geophysical Research Letters, 2017, 44(21): 11115−11124.
|
[39] |
赵新华, 侯一筠, 刘泽, 等. 基于卫星高度计和浮标漂流轨迹的海洋涡旋特征信息对比分析[J]. 海洋与湖沼, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269
Zhao Xinhua, Hou Yijun, Liu Ze, et al. Analysis of the global eddies based on altimeter snapshots and buoy drifting trajectory data[J]. Journal of Oceanologia and Limnologia, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269
|
[40] |
Meng Yao, Liu Hailong, Lin Pengfei, et al. Oceanic mesoscale eddy in the Kuroshio extension: comparison of four datasets[J]. Atmospheric and Oceanic Science Letters, 2020, 14(1): 100011.
|
[41] |
Teague W J, Jacobs G A, Ko D S, et al. Connectivity of the Taiwan, Cheju, and Korea straits[J]. Continental Shelf Research, 2003, 23(1): 63−77. doi: 10.1016/S0278-4343(02)00150-4
|
[42] |
Chen Gengxin, Wang Dongxiao, Hou Yijun. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012, 47: 178−185. doi: 10.1016/j.csr.2012.07.011
|
[43] |
Takematsu M, Ostrovski A G, Nagano Z. Observations of eddies in the Japan Basin interior[J]. Journal of Oceanography, 1999, 55(2): 237−246. doi: 10.1023/A:1007846114165
|
[44] |
Kim C H, Lie H J, Chu K S. On the intermediate water in the southwestern East Sea (Sea of Japan)[J]. Elsevier Oceanography Series, 1991, 54: 129−141.
|
[45] |
Arruda W Z, Nof D, O’Brien J J. Does the Ulleung eddy owe its existence to β and nonlinearities?[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(12): 2073−2090. doi: 10.1016/j.dsr.2004.07.014
|
[46] |
Rhines P B. Vorticity Dynamics of the oceanic general circulation[J]. Annual Review of Fluid Mechanics, 1986, 18(1): 433−497. doi: 10.1146/annurev.fl.18.010186.002245
|
[47] |
Zhong Yisen, Bracco A, Villareal T A. Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field[J]. Limnology and Oceanography: Fluids and Environments, 2012, 2(1): 12−27. doi: 10.1215/21573689-1573372
|
[48] |
Rodgers J L, Nicewander W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician, 1988, 42(1): 59−66.
|
[49] |
Shin H R, Shin C W, Kim C, et al. Movement and structural variation of warm eddy WE92 for three years in the western East/Japan Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(11/13): 1742−1762.
|