Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
Yan Chenbing,Cheng Lingqiao,Zhu Guoping. Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica[J]. Haiyang Xuebao,2022, 44(3):1–14 doi: 10.12284/hyxb2022023
Citation: Yan Chenbing,Cheng Lingqiao,Zhu Guoping. Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica[J]. Haiyang Xuebao,2022, 44(3):1–14 doi: 10.12284/hyxb2022023

Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica

doi: 10.12284/hyxb2022023
  • Received Date: 2021-03-18
  • Rev Recd Date: 2021-06-02
  • Publish Date: 2022-03-18
  • Eddies in the Southern Ocean play a critical role in transporting material and heat across fronts. Scotia Sea is located downstream of the Drake Passage and is an important economic fishery area, hence study on the distribution and role of eddies in this region is of urgent importance. Based on satellite remote sensing data from 2005 to 2019, the characteristics of eddies are statistically calculated, including radius, propagation distance, and lifespan. Their spatial distribution, cross-front movement, and movement characteristics are also analyzed. Meanwhile, the internal hydrographic characteristics of eddies are analyzed based on profile data. Results show that about 92% of eddies have a lifespan shorter than 30 d, with an average radius between 10 km and 30 km. The generating location of eddies are mainly near Polar Front (PF), Southern ACC Front (SACCF), and Sub-antarctic Front (SAF), corresponding to the bottom depth ranging 3 000 m to 5 000 m. Large values of eddy kinetic energy (EKE) concentrate between PF and SAF due to the obstruction of the submarine ridges, and EKE reaches a significant positive anomaly after 2016. The number of equator-ward eddies is dominant in the eddies across PF and SACCF, with most being cyclonic eddies. Anticyclonic eddies are dominant in poleward eddies. The internal hydrographic structures of eddies show that temperature and salinity are relatively low in the subsurface layer of the cold eddies, consistent with the characteristics of water masses at high latitudes. While they are relatively high in the subsurface layer of the warm eddies. It suggests that cold eddies may carry water from high latitudes to low latitudes and warm eddies may carry seawater from low latitudes to high latitudes. This study provides a basis for further understanding of the characteristics of eddies in the Scotia Sea and their effects on the distribution of biological populations and material and energy transport.
  • loading
  • [1]
    Frenger I, Münnich M, Gruber N, et al. Southern ocean eddy phenomenology[J]. Journal of Geophysical Research, 2015, 120(11): 7413−7449.
    [2]
    Abernathey R, Marshall J, Mazloff M, et al. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean[J]. Journal of Physical Oceanography, 2010, 40(1): 170−184. doi: 10.1175/2009JPO4201.1
    [3]
    Nikurashin M, Vallis G K, Adcroft A. Routes to energy dissipation for geostrophic flows in the Southern Ocean[J]. Nature Geoscience, 2013, 6(1): 48−51. doi: 10.1038/ngeo1657
    [4]
    Muhling B A, Beckley L E, Olivar M P. Ichthyoplankton assemblage structure in two meso-scale Leeuwin Current eddies, eastern Indian Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(8/11): 1113−1128.
    [5]
    Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep-Sea Research and Oceanographic Abstracts, 1970, 17(3): 445−454. doi: 10.1016/0011-7471(70)90059-8
    [6]
    Isern-Fontanet J, García-Ladona E, Font J. Vortices of the mediterranean sea: an altimetric perspective[J]. Journal of Physical Oceanography, 2006, 36(1): 87−103. doi: 10.1175/JPO2826.1
    [7]
    Swart N C, Ansorge I J, Lutjeharms J R E. Detailed characterization of a cold Antarctic eddy[J]. Journal of Geophysical Research, 2008, 113(C1): C01009.
    [8]
    Ivanov Y A, Krasnopevtsev A Y, Morozov Y G, et al. A cyclonic frontal eddy in the Antarctic circumpolar current[J]. Oceanology, 1985, 25: 22−25.
    [9]
    Joyce T M, Patterson S L, Millard Jr R C. Anatomy of a cyclonic ring in the drake passage[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1981, 28(11): 1265−1287. doi: 10.1016/0198-0149(81)90034-0
    [10]
    Jayne S R, Marotzke J. The oceanic eddy heat transport[J]. Journal of Physical Oceanography, 2002, 32(12): 3328−3345. doi: 10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2
    [11]
    Trani M, Falco P, Zambianchi E. Near-surface eddy dynamics in the Southern Ocean[J]. Polar Research, 2011, 30: 11203. doi: 10.3402/polar.v30i0.11203
    [12]
    Patel R S, Phillips H E, Strutton P G, et al. Meridional heat and salt transport across the subantarctic front by cold-core eddies[J]. Journal of Geophysical Research, 2019, 124(2): 981−1004.
    [13]
    Korb R E, Whitehouse M. Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(5): 721−738. doi: 10.1016/j.dsr.2004.02.006
    [14]
    Bernard A T F, Ansorge I J, Froneman P W, et al. Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(10): 1841−1851. doi: 10.1016/j.dsr.2007.06.007
    [15]
    Barker P F. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation[J]. Earth-Science Reviews, 2001, 55(1/2): 1−39.
    [16]
    Morrow R, Donguy J R, Chaigneau A, et al. Cold-core anomalies at the Subantarctic front, south of Tasmania[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1417−1440. doi: 10.1016/j.dsr.2004.07.005
    [17]
    Korb R E, Whitehouse M J, Ward P. SeaWiFS in the Southern Ocean: spatial and temporal variability in phytoplankton biomass around South Georgia[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/3): 99−116.
    [18]
    Ferrari R, Provost C, Park Y H, et al. Heat fluxes across the Antarctic circumpolar current in Drake Passage: mean flow and eddy contributions[J]. Journal of Geophysical Research, 2014, 119(9): 6381−6402.
    [19]
    Hill S L, Reid K, North A W. Recruitment of mackerel icefish (Champsocephalus gunnari) at South Georgia indicated by predator diets and its relationship with sea surface temperature[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(11): 2530−2537. doi: 10.1139/f05-157
    [20]
    刘慧, 朱国平. 近百年来南极磷虾分布冷热点的时空变动[J]. 应用生态学报, 2020, 31(3): 1015−1022.

    Liu Hui, Zhu Guoping. Spatial-temporal variation in hotspot and coldspot of Antarctic krill distribution in recent 100 years[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1015−1022.
    [21]
    Kahru M, Mitchell B G, Gille S T, et al. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean[J]. Geophysical Research Letters, 2007, 34(14): L14603. doi: 10.1029/2007GL030430
    [22]
    崔伟, 王伟, 马毅, 等. 基于1993−2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.

    Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993−2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28.
    [23]
    胡冬, 陈希, 赵艳玲, 等. 两个西边界流延伸体区域中尺度涡统计特征分析[J]. 海洋学报, 2018, 40(6): 15−28.

    Hu Dong, Chen Xi, Zhao Yanling, et al. Statistical characteristics of mesoscale eddies in the two western boundary current extension regions[J]. Haiyang Xuebao, 2018, 40(6): 15−28.
    [24]
    汤博, 侯一筠, 殷玉齐, 等. 北太平洋副热带逆流区中尺度涡旋的统计特征及其分布规律[J]. 海洋与湖沼, 2019, 50(5): 937−947. doi: 10.11693/hyhz20190300050

    Tang Bo, Hou Yijun, Yin Yuqi, et al. Statistical characteristics of mesoscale eddies and the distribution in the North Pacific subtropical countercurrent[J]. Oceanologia et Limnologia Sinica, 2019, 50(5): 937−947. doi: 10.11693/hyhz20190300050
    [25]
    胡松, 李敏华, 刘必林, 等. 黑潮延伸体区域叶绿素季节变化以及中尺度涡对其影响机制研究[J]. 海洋与湖沼, 2020, 51(6): 1370−1378. doi: 10.11693/hyhz20191100234

    Hu Song, Li Minhua, Liu Bilin, et al. Seasonal characteristics of Chlorophyll a concentration in Kuroshio extension and influences of mesoscale eddies[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1370−1378. doi: 10.11693/hyhz20191100234
    [26]
    刘瑜, 郑全安, 李晓峰. 西北太平洋柔鱼渔场分布与涡动能变化的相关关系[J]. 海洋学报, 2020, 42(2): 44−51.

    Liu Yu, Zheng Quanan, Li Xiaofeng. Relationship between neon flying squid Ommastrephes bartramii fishery distribution patterns and eddy kinetic energy in Northwest Pacific Ocean[J]. Haiyang Xuebao, 2020, 42(2): 44−51.
    [27]
    郑晓莉, 董庆, 樊星. 北太平洋中尺度涡海表温度和叶绿素浓度特征分析[J]. 遥感学报, 2020, 24(1): 85−96.

    Zheng Xiaoli, Dong Qing, Fan Xing. Characteristics of sea surface temperature and chlorophyll concentration inside mesoscale eddies in the North Pacific Ocean[J]. Journal of Remote Sensing, 2020, 24(1): 85−96.
    [28]
    曾伟强, 张书文, 马永贵, 等. 1993−2017年南海中尺度涡特征分析[J]. 广东海洋大学学报, 2019, 39(5): 96−106.

    Zeng Weiqiang, Zhang Shuwen, Ma Yonggui, et al. Analysis of mesoscale eddy characteristics in the South China Sea from 1993 to 2017[J]. Journal of Guangdong Ocean University, 2019, 39(5): 96−106.
    [29]
    祖永灿, 孙双文, 赵玮, 等. 南海中尺度涡上海面热通量异常的季节变化[J]. 海洋科学进展, 2019, 37(1): 11−21. doi: 10.3969/j.issn.1671-6647.2019.01.002

    Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. Seasonal characteristics and mechanism of the sea surface heat fluxes associated with mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2019, 37(1): 11−21. doi: 10.3969/j.issn.1671-6647.2019.01.002
    [30]
    白志鹏, 韩君, 郭贤鹏, 等. 基于CORA2再分析数据的南海中尺度涡时空分布特征初步研究[J]. 海洋预报, 2020, 37(2): 73−83. doi: 10.11737/j.issn.1003-0239.2020.02.009

    Bai Zhipeng, Han Jun, Guo Xianpeng, et al. Spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea based on the CORA2 reanalysis data[J]. Marine Forecasts, 2020, 37(2): 73−83. doi: 10.11737/j.issn.1003-0239.2020.02.009
    [31]
    Vaughan D G, Marshall G J, Connolley W M, et al. Recent rapid regional climate warming on the Antarctic peninsula[J]. Climatic Change, 2003, 60(3): 243−274. doi: 10.1023/A:1026021217991
    [32]
    Nencioli F, Dong Changming, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1
    [33]
    董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4): 439−453. doi: 10.3969/j.issn.1671-6647.2017.04.001

    Dong Changming, Jiang Xingliang, Xu Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in Marine Science, 2017, 35(4): 439−453. doi: 10.3969/j.issn.1671-6647.2017.04.001
    [34]
    胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14.

    Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14.
    [35]
    Sun Wenjin, Dong Changming, Tan Wei, et al. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea[J]. Remote Sensing, 2018, 10(5): 795. doi: 10.3390/rs10050795
    [36]
    Orsi A H, Whitworth III T, Nowlin Jr W D. On the meridional extent and fronts of the Antarctic circumpolar current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
    [37]
    陈红霞, 林丽娜, 潘增弟. 南极绕极流研究进展综述[J]. 极地研究, 2017, 29(2): 183−193.

    Chen Hongxia, Lin Li’na, Pan Zengdi. An overview of Antarctic circumpolar current research[J]. Chinese Journal of Polar Research, 2017, 29(2): 183−193.
    [38]
    Moore J K, Abbott M R, Richman J G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data[J]. Journal of Geophysical Research, 1999, 104(C2): 3059−3073. doi: 10.1029/1998JC900032
    [39]
    Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018
    [40]
    Turner J, Phillips T, Marshall G J, et al. Unprecedented springtime retreat of Antarctic sea ice in 2016[J]. Geophysical Research Letters, 2017, 44(13): 6868−6875. doi: 10.1002/2017GL073656
    [41]
    Armitage T W K, Bacon S, Ridout A L, et al. Arctic Ocean surface geostrophic circulation 2003–2014[J]. The Cryosphere, 2017, 11(4): 1767−1780. doi: 10.5194/tc-11-1767-2017
    [42]
    徐茗, 陈戈, 彭琳. 短生命周期海洋涡旋的时空分布特征[J]. 海洋学报, 2019, 41(9): 94−104.

    Xu Ming, Chen Ge, Peng Lin. Temporal and spatial properties of short-life oceanic eddies[J]. Haiyang Xuebao, 2019, 41(9): 94−104.
    [43]
    Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8: 85−114.
    [44]
    Ladd C, Mordy C W, Kachel N B, et al. Northern Gulf of Alaska eddies and associated anomalies[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(4): 487−509. doi: 10.1016/j.dsr.2007.01.006
    [45]
    Cotroneo Y, Budillon G, Fusco G, et al. Cold core eddies and fronts of the Antarctic circumpolar current south of New Zealand from in situ and satellite data[J]. Journal of Geophysical Research, 2013, 118(5): 2653−2666.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (394) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return