Citation: | Yang Erjun,Yang Lintong,Wang Weizheng, et al. Identification and functional analysis of SNP from transcriptome of cobia (Rachycentron canadum) in response to hypoxia stress[J]. Haiyang Xuebao,2022, 44(1):113–124 doi: 10.12284/hyxb2022006 |
[1] |
Fan Shiliang, Li Haidong, Zhao Rui. Effects of normoxic and hypoxic conditions on the immune response and gut microbiota of Bostrichthys sinensis[J]. Aquaculture, 2020, 525: 735336. doi: 10.1016/j.aquaculture.2020.735336
|
[2] |
贾玉东, 王嘉伟, 李娟, 等. 溶解氧对鱼类生理功能影响及调控机制[J]. 水产研究, 2020, 7(1): 8−14. doi: 10.12677/OJFR.2020.71002
Jia Yudong, Wang Jiawei, Li Juan, et al. Effect of dissolved oxygen on physiological functions and mechanism in fish[J]. Open Journal of Fisheries Research, 2020, 7(1): 8−14. doi: 10.12677/OJFR.2020.71002
|
[3] |
穆景利, 靳非, 赵化德, 等. 水体低氧的早期暴露对青鳉(Oryzias latipes)后期的生长、性别比和繁殖能力的影响[J]. 生态毒理学报, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002
Mu Jingli, Jin Fei, Zhao Huade, et al. Early-life exposure to hypoxia altered growth, sex ratio, and reproduction in Medaka (Oryzias latipes)[J]. Asian Journal of Ecotoxicology, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002
|
[4] |
Vanderplancke G, Claireaux G, Quazuguel P, et al. Hypoxic episode during the larval period has long-term effects on European sea bass juveniles (Dicentrarchus labrax)[J]. Marine Biology, 2015, 162(2): 367−376. doi: 10.1007/s00227-014-2601-9
|
[5] |
林艾影, 王维政, 陈刚, 等. 2种乳酸菌对军曹鱼幼鱼生长及消化酶、免疫酶活性的影响[J]. 广东海洋大学学报, 2020, 40(5): 112−117. doi: 10.3969/j.issn.1673-9159.2020.05.014
Lin Aiying, Wang Weizheng, Chen Gang, et al. Effects of two lactic acid bacteria on growth performance and activities of digestive and non-specific immune enzymes of juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2020, 40(5): 112−117. doi: 10.3969/j.issn.1673-9159.2020.05.014
|
[6] |
勾效伟, 区又君, 廖锐. 我国军曹鱼研究现状[J]. 海洋渔业, 2007, 29(1): 84−89. doi: 10.3969/j.issn.1004-2490.2007.01.016
Gou Xiaowei, Ou Youjun, Liao Rui. Present status on studies of cobia Rachycentron canadum in China[J]. Marine Fisheries, 2007, 29(1): 84−89. doi: 10.3969/j.issn.1004-2490.2007.01.016
|
[7] |
王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J]. 海洋学报, 2021, 43(2): 49−58.
Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2021, 43(2): 49−58.
|
[8] |
王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12−18. doi: 10.3969/j.issn.1673-9159.2020.05.002
Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Effects of hypoxia stress on antioxidation, immunity and energy metabolism of juvenile cobia, Rachycentron canadum[J]. Journal of Guangdong Ocean University, 2020, 40(5): 12−18. doi: 10.3969/j.issn.1673-9159.2020.05.002
|
[9] |
李洪娟, 陈刚, 郭志雄, 等. 军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报, 2020, 42(4): 12−19.
Li Hongjuan, Chen Gang, Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao, 2020, 42(4): 12−19.
|
[10] |
郭志雄, 曾泽乾, 黄建盛, 等. 急性低氧胁迫对大规格军曹鱼幼鱼肝脏氧化应激、能量利用及糖代谢的影响[J]. 广东海洋大学学报, 2020, 40(3): 134−140. doi: 10.3969/j.issn.1673-9159.2020.03.017
Guo Zhixiong, Zeng Zeqian, Huang Jiansheng, et al. Effects of acute hypoxia on oxidative stress, energy utilization and carbohydrate metabolism in liver of large-sized juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2020, 40(3): 134−140. doi: 10.3969/j.issn.1673-9159.2020.03.017
|
[11] |
黄建盛, 陆枝, 陈刚, 等. 急性低氧胁迫对军曹鱼大规格幼鱼血液生化指标的影响[J]. 海洋学报, 2019, 41(6): 76−84.
Huang Jiansheng, Lu Zhi, Chen Gang, et al. Acute hypoxia stress on blood biochemical indexes of large-sized juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2019, 41(6): 76−84.
|
[12] |
Wang Weizheng, Huang Jiansheng, Zhang Jiandong, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
|
[13] |
张晓萌, 马普, 王洪迪, 等. SNPs在水产动物中的研究进展[J]. 生物技术通报, 2013(8): 7−11.
Zhang Xiaomeng, Ma Pu, Wang Hongdi, et al. Progresses of SNPs studies in aquaculture animals[J]. Biotechnology Bulletin, 2013(8): 7−11.
|
[14] |
赵莲, 薛蓓, 高焕, 等. SNP分子标记技术在经济甲壳动物中的应用进展[J]. 海洋渔业, 2017, 39(2): 233−240. doi: 10.3969/j.issn.1004-2490.2017.02.013
Zhao Lian, Xue Bei, Gao Huan, et al. Progress on the SNP molecular markers in economic crustaceans[J]. Marine Fisheries, 2017, 39(2): 233−240. doi: 10.3969/j.issn.1004-2490.2017.02.013
|
[15] |
侯振平, 蒋思文. 单核苷酸多态性的研究进展[J]. 中国畜牧杂志, 2004, 40(4): 45−47. doi: 10.3969/j.issn.0258-7033.2004.04.017
Hou Zhenping, Jiang Siwen. Advance in single nucleotide polymorphism[J]. Chinese Journal of Animal Science, 2004, 40(4): 45−47. doi: 10.3969/j.issn.0258-7033.2004.04.017
|
[16] |
王婷, 黄智慧, 马爱军, 等. 基于转录组数据的大菱鲆(Scophthalmus maximus)SNP标记开发及多态性分析[J]. 海洋与湖沼, 2014, 45(6): 1300−1307.
Wang Ting, Huang Zhihui, Ma Aijun, et al. Development and polymorphic analysis of SNP markers in Scophthalmus maximus based on transcriptome database[J]. Oceanologia et Limnologia Sinica, 2014, 45(6): 1300−1307.
|
[17] |
Tsai H Y, Robledo D, Lowe N R, et al. Construction and annotation of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome[J]. G3 Genes| Genomes| Genetics, 2016, 6(7): 2173−2179.
|
[18] |
刘敬文. 凡纳滨对虾免疫基因SNPs开发及其与WSSV抗性的关联分析[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.
Liu Jingwen. SNPs identification of immune related genes from Litopenaeus vannamei and their association analyses to WSSV resistance[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2014.
|
[19] |
张德宁, 吕建建, 刘萍, 等. 三疣梭子蟹生长相关SNP位点的鉴定[J]. 中国水产科学, 2015, 22(3): 393−401.
Zhang Dening, Lü Jianjian, Liu Ping, et al. Identifying SNP markers correlated with growth of swimming crab (Portunus trituberculatus) based on a comparative transcriptome[J]. Journal of Fishery Sciences of China, 2015, 22(3): 393−401.
|
[20] |
王忠良, 丁燏, 许尤厚, 等. 马氏珠母贝(Pinctada fucata)血细胞转录组测序数据中SNP标记的开发及其功能注释分析[J]. 海洋与湖沼, 2018, 49(2): 403−412.
Wang Zhongliang, Ding Yu, Xu Youhou, et al. SNP discovery and functional annotation in transcriptome datasets from hemocytes of Pinctada fucata[J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 403−412.
|
[21] |
李纪勤, 包振民, 李玲, 等. 栉孔扇贝EST-SNP标记开发及多态性分析[J]. 中国海洋大学学报, 2013, 43(1): 56−63.
Li Jiqin, Bao Zhenmin, Li Ling, et al. Development and characterization of EST-SNP in Chlamys farreri[J]. Periodical of Ocean University of China, 2013, 43(1): 56−63.
|
[22] |
雒林通, 马芳, 唐德富, 等. 基于益生菌调节的太平鸡回肠SNP位点分析[J]. 安徽农业科学, 2020, 48(21): 86−90, 94. doi: 10.3969/j.issn.0517-6611.2020.21.023
Luo Lintong, Ma Fang, Tang Defu, et al. SNP site analysis of Taiping chicken ileum based on probiotic regulation[J]. Journal of Anhui Agricultural Sciences, 2020, 48(21): 86−90, 94. doi: 10.3969/j.issn.0517-6611.2020.21.023
|
[23] |
王菁, 刘付柏, 许尤厚, 等. 基于转录组测序的方斑东风螺单核苷酸多态性位点挖掘及功能注释[J]. 广东海洋大学学报, 2021, 41(1): 111−118. doi: 10.3969/j.issn.1673-9159.2021.01.015
Wang Jing, Liu Fubai, Xu Youhou, et al. SNP site biological analysis of Babylonia areolata based on RNA-seq technology[J]. Journal of Guangdong Ocean University, 2021, 41(1): 111−118. doi: 10.3969/j.issn.1673-9159.2021.01.015
|
[24] |
唐修阳, 王传聪, 项杰, 等. 罗氏沼虾转录组免疫相关SNP的挖掘与分析[J]. 江苏农业科学, 2019, 47(4): 145−148.
Tang Xiuyang, Wang Chuancong, Xiang Jie, et al. Mining and analysis of immune-related SNPs in transcriptome of Macrobrachium rosenbergii[J]. Jiangsu Agricultural Sciences, 2019, 47(4): 145−148.
|
[25] |
陈柏湘, 王伟峰, 王卫民, 等. 团头鲂低氧耐受相关SNPs标记的开发[J]. 华中农业大学学报, 2019, 38(2): 23−29.
Chen Boxiang, Wang Weifeng, Wang Weimin, et al. Isolation of SNP markers associated with hypoxia tolerance in Megalobrama amblycephala[J]. Journal of Huazhong Agricultural University, 2019, 38(2): 23−29.
|
[26] |
An Rui, Fu Jianjun, Jiang Bingjie, et al. Development of SNP markers for the bighead carp (Hypophthalmichthys nobilis) by using transcriptomic sequences[J]. Conservation Genetics Resources, 2020, 12(3): 409−412. doi: 10.1007/s12686-020-01133-z
|
[27] |
曹丹煜. 军曹鱼幼鱼盐度适应特性及渗透压调节分子机制的初步分析[D]. 湛江: 广东海洋大学, 2020.
Cao Danyu. Preliminary analysis of salinity adaptation characteristics and osmotic pressure regulation molecular mechanism of juvenile cobia, Rachycentron canadum[D]. Zhanjiang: Guangdong Ocean University, 2020.
|
[28] |
王伟佳, 韩兆方, 李完波, 等. 大黄鱼雌雄性腺长链非编码RNA的挖掘与差异分析[J]. 中国水产科学, 2019, 26(5): 852−860.
Wang Weijia, Han Zhaofang, Li Wanbo, et al. The identification and analysis of long noncoding RNA in testes and ovaries of the large yellow croaker (Larimichthys crocea)[J]. Journal of Fishery Sciences of China, 2019, 26(5): 852−860.
|
[29] |
张美彦, 宋春艳, 于海龙, 等. 基于SNP分型的香菇交配型AS-PCR鉴定[J]. 食用菌学报, 2019, 26(2): 1−9.
Zhang Meiyan, Song Chunyan, Yu Hailong, et al. Mating-type identification of Lentinula edodes based on SNP genotyping by AS-PCR[J]. Acta Edulis Fungi, 2019, 26(2): 1−9.
|
[30] |
范欢欢, 王天骄, 董依萌, 等. 马鹿特异性SNP分子标记的验证[J]. 中国畜牧兽医, 2021, 48(4): 1313−1322.
Fan Huanhuan, Wang Tianjiao, Dong Yimeng, et al. Verification of red deer specific molecular marker SNP[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1313−1322.
|
[31] |
Wang Kai, Li Mingyao, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Research, 2010, 38(16): e164. doi: 10.1093/nar/gkq603
|
[32] |
Wang Wenji, Yi Qilin, Ma Liman, et al. Sequencing and characterization of the transcriptome of half-smooth tongue sole (Cynoglossus semilaevis)[J]. BMC Genomics, 2014, 15(1): 470. doi: 10.1186/1471-2164-15-470
|
[33] |
Wang Panpan, Xiao Shijun, Han Zhaofang, et al. SNP discovery in large yellow croaker (Larimichthys crocea) using Roche 454 pyrosequencing sequencing platform[J]. Conservation Genetics Resources, 2015, 7(4): 777−779. doi: 10.1007/s12686-015-0481-z
|
[34] |
Hayes B, Laerdahl J K, Lien S, et al. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences[J]. Aquaculture, 2007, 265(1/4): 82−90.
|
[35] |
Zhao Hui, Li Qizhai, Li Jun, et al. The study of neighboring nucleotide composition and transition/transversion bias[J]. Science in China Series C: Life Sciences, 2006, 49(4): 395−402. doi: 10.1007/s11427-006-2002-5
|
[36] |
李胜杰, 白俊杰, 赵荦, 等. 大口黑鲈EST-SNP标记开发及其与生长性状的相关性分析[J]. 海洋渔业, 2018, 40(1): 38−46. doi: 10.3969/j.issn.1004-2490.2018.01.005
Li Shengjie, Bai Junjie, Zhao Luo, et al. Development of EST-SNPs in largemouth bass (Micropterus salmoides) and analysis of their correlation with growth traits[J]. Marine Fisheries, 2018, 40(1): 38−46. doi: 10.3969/j.issn.1004-2490.2018.01.005
|
[37] |
李彦杰, 贾洪沅, 李庆天, 等. 基于转录组数据的三峡库区消落带适生狗牙根SNPs和SSRs分析[J]. 西南农业学报, 2020, 33(3): 524−528.
Li Yanjie, Jia Hongyuan, Li Qingtian, et al. Analysis of SNPs and SSRs of suitable Cynodon dactylon in fluctuating zone of Three Gorges Reservoir Area based on transcriptome data[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(3): 524−528.
|
[38] |
Zhao Zhongming, Boerwinkle E. Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome[J]. Genome Research, 2002, 12(11): 1679−1686. doi: 10.1101/gr.287302
|
[39] |
唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074
Tang Liqun, Xiao Cenglin, Wang Weiping. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074
|
[40] |
谭新, 童金苟. SNPs及其在水产动物遗传学与育种学研究中的应用[J]. 水生生物学报, 2011, 35(2): 348−354. doi: 10.3724/SP.J.1035.2011.00348
Tan Xin, Tong Jingou. SNPs and their applications in studies on genetics and breeding of aquaculture animals[J]. Acta Hydrobiologica Sinica, 2011, 35(2): 348−354. doi: 10.3724/SP.J.1035.2011.00348
|
[41] |
孙明洁, 张娜, 徐善良, 等. 两种弧菌感染大黄鱼免疫相关基因的SNP位点分析[J]. 上海海洋大学学报, 2019, 28(5): 772−781. doi: 10.12024/jsou.20190402623
Sun Mingjie, Zhang Na, Xu Shanliang, et al. Analysis of SNP loci in immune-related genes of two species of Vibrio infecting large yellow croaker (Larimichthys crocea)[J]. Journal of Shanghai Ocean University, 2019, 28(5): 772−781. doi: 10.12024/jsou.20190402623
|
[42] |
张磊. 鮸鱼microRNA-21对IL1R1的免疫调控机制研究[D]. 舟山: 浙江海洋大学, 2020.
Zhang Lei. Study on the immune regulation mechanism of microRNA-21 on IL1R1 in Miichthys miiuy[D]. Zhoushan: Zhejiang Ocean University, 2020.
|
[43] |
Lam S Y, Tipoe G L, Liong E C, et al. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body[J]. Histochemistry and Cell Biology, 2008, 130(3): 549−559. doi: 10.1007/s00418-008-0437-4
|
[44] |
郭旗, 李超. IL1R1和IL1R2基因多态性与缺血性脑卒中患病风险的相关性[J]. 贵州医科大学学报, 2018, 43(3): 294−298.
Guo Qi, Li Chao. Association of IL1R1 and IL1R2 gene polymorphisms with risk of ischemic stroke[J]. Journal of Guizhou Medical University, 2018, 43(3): 294−298.
|
[45] |
胡亮. 藏系绵羊种质资源鉴定技术的研究[D]. 扬州: 扬州大学, 2019.
Hu Liang. Study on identification techniques of Tibetan Sheep germplasm resources[D]. Yangzhou: Yangzhou University, 2019.
|
[46] |
赵亚男, 刘明, 张玥, 等. Wnt信号通路与皮肤创面愈合的关系[J]. 现代生物医学进展, 2015, 15(11): 2173−2176, 2184.
Zhao Ya’nan, Liu Ming, Zhang Yue, et al. The relationship between Wnt signaling pathway and skin wound healing[J]. Progress in Modern Biomedicine, 2015, 15(11): 2173−2176, 2184.
|
[47] |
陈爽, 张晓敏. Wnt信号通路在自身免疫性疾病中的作用研究进展[J]. 中国免疫学杂志, 2021, 37(2): 254−258. doi: 10.3969/j.issn.1000-484X.2021.02.025
Chen Shuang, Zhang Xiaomin. Research progress on role of Wnt signaling pathway in autoimmune diseases[J]. Chinese Journal of Immunology, 2021, 37(2): 254−258. doi: 10.3969/j.issn.1000-484X.2021.02.025
|
[48] |
张丽晗, 罗智, 有文静, 等. 黄颡鱼FZD家族4个基因的克隆、组织表达及对铜的响应[J]. 水产学报, 2018, 42(5): 625−632.
Zhang Lihan, Luo Zhi, You Wenjing, et al. Molecular characterization and tissue distribution of Frizzled (FZD) in yellow catfish (Pelteobagrus fulvidraco) by copper exposure[J]. Journal of Fisheries of China, 2018, 42(5): 625−632.
|
[49] |
Zhao Bingru, Fu Xuefeng, Tian Kechuan, et al. Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)[J]. Journal of Integrative Agriculture, 2019, 18(10): 2351−2360. doi: 10.1016/S2095-3119(19)62735-8
|
[50] |
张璐. 环境因素及LRP5基因与2型糖尿病发病关联的队列研究[D]. 郑州: 郑州大学, 2017.
Zhang Lu. Association of environmental factors and LRP5 gene with type 2 diabetes mellitus in a cohort study[D]. Zhengzhou: Zhengzhou University, 2017.
|
[51] |
Eaton J M, Mullins G R, Brindley D N, et al. Phosphorylation of lipin 1 and charge on the phosphatidic acid head group control its phosphatidic acid phosphatase activity and membrane association[J]. Journal of Biological Chemistry, 2013, 288(14): 9933−9945. doi: 10.1074/jbc.M112.441493
|
[52] |
Lu Shuxian, Lü Zhaojie, Wang Zhihao, et al. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish[J]. Theranostics, 2021, 11(6): 2788−2805. doi: 10.7150/thno.53330
|
[53] |
Mylonis I, Sembongi H, Befani C, et al. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression[J]. Journal of Cell Science, 2012, 125(14): 3485−3493.
|
[54] |
He Xiaoping, Xu Xuewen, Zhao Shuhong, et al. Investigation of Lpin1 as a candidate gene for fat deposition in pigs[J]. Molecular Biology Reports, 2009, 36(5): 1175−1180. doi: 10.1007/s11033-008-9294-4
|
[55] |
郭志雄. 低氧环境对军曹鱼幼鱼生化指标、相关基因表达的影响及其转录组学分析[D]. 湛江: 广东海洋大学, 2020.
Guo Zhixiong. Effects of hypoxic environment on biochemical indexes, related gene expression and transcriptome analysis of cobia juveniles[D]. Zhanjiang: Guangdong Ocean University, 2020.
|
[56] |
Zhang Kai, Liu Xiumei, Han Miao, et al. Functional differentiation of three phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in response to Vibrio anguillarum infection in turbot (Scophthalmus maximus)[J]. Fish & Shellfish Immunology, 2019, 92: 450−459.
|
[57] |
Engelman J A, Luo Ji, Cantley L C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism[J]. Nature Reviews Genetics, 2006, 7(8): 606−619. doi: 10.1038/nrg1879
|
[58] |
Wu Xiaoyun, Ding Xuezhi, Chu Min, et al. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens)[J]. Journal of Integrative Agriculture, 2015, 14(4): 741−748. doi: 10.1016/S2095-3119(14)60854-6
|
[59] |
朱莉, 李根, 孔小艳, 等. 藏绵羊血红蛋白、EPAS1基因与低氧适应相关性研究[J]. 云南农业大学学报(自然科学版), 2020, 35(3): 436−442.
Zhu Li, Li Gen, Kong Xiaoyan, et al. The association of genes hemoglobin and EPAS1 with hypoxia adaptation in the Tibetan Sheep[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3): 436−442.
|